Advertisement

Journal of Seismology

, Volume 20, Issue 4, pp 1059–1073 | Cite as

Diversity of the 2014 Iquique’s foreshocks and aftershocks: clues about the complex rupture process of a Mw 8.1 earthquake

  • Sergio León-Ríos
  • Sergio Ruiz
  • Andrei Maksymowicz
  • Felipe Leyton
  • Amaya Fuenzalida
  • Raúl Madariaga
ORIGINAL ARTICLE

Abstract

We study the foreshocks and aftershocks of the 1 April 2014 Iquique earthquake of Mw 8.1. Most of these events were recorded by a large digital seismic network that included the Northern Chile permanent network and up to 26 temporary broadband digital stations. We relocated and computed moment tensors for 151 events of magnitude Mw ≥ 4.5. Most of the foreshocks and aftershocks of the Iquique earthquake are distributed to the southwest of the rupture zone. These events are located in a band of about 50 km from the trench, an area where few earthquakes occur elsewhere in Chile. Another important group of aftershocks is located above the plate interface, similar to those observed during the foreshock sequence. The depths of these events were constrained by regional moment tensor (RMT) solutions obtained using the records of the dense broad band network. The majority of the foreshocks and aftershocks were associated to the interplate contact, with dip and strike angles in good agreement with the characteristics of horst and graben structures (>2000 m offset) typical of the oceanic Nazca Plate at the trench and in the outer rise region. We propose that the spatial distribution of foreshocks and aftershocks, and its seismological characteristics were strongly controlled by the rheological and tectonics conditions of the extreme erosive margin of Northern Chile.

Keywords

Earthquake Chile Nazca Plate Moment tensor Erosive margin 

Notes

Acknowledgments

We thank the support of the Chilean National Science Foundation project FONDECYT No. 11130230 and Programa Riesgo Sísmico (AIN, Universidad de Chile). A.M was supported by project FONDECYT 3150160. We thank Centro Sismológico Nacional (www.sismologia.cl) and IPOC consortium for making raw data available to us.

Supplementary material

10950_2016_9568_MOESM1_ESM.doc (6.5 mb)
ESM 1 (DOC 6611 kb)

References

  1. Agurto H, Rietbrock A, Ryder I, Miller M (2012) Seismic-afterslip characterization of the 2010 MW 8.8 Maule, Chile, earthquake based on moment tensor inversion. Geophys Res Lett 39, L20303. doi:  10.1029/2012GL053434.
  2. Asano Y, Saito T, Ito Y, Shiomi K, Hirose H, Takumi M, Aoi S, Hori S, Sekiguchi S (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets Space 63:669–673. doi: 10.5047/eps.2011.06.016 CrossRefGoogle Scholar
  3. Béjar-Pizarro M, Socquet A, Armijo R, Carrizo D, Genrich J, Simons M (2013) Andean structural control on interseismic coupling in the North Chile subduction zone. Nat Geosci 6:462–467. doi: 10.1038/ngeo1802 CrossRefGoogle Scholar
  4. Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Nat Hazards 4:23–44. doi: 10.1007/BF00126557 CrossRefGoogle Scholar
  5. Contreras Reyes E, Jara J, Grevemeyer I, Ruiz S, Carrizo D (2012) Abrupt change in the dip of the subducting plate beneath north Chile. Nat Geosci 5:342–345. doi: 10.1038/ngeo1447 CrossRefGoogle Scholar
  6. Cubas N, Avouac JP, Souloumiac P, Leroy Y (2013) Megathrust friction determined from mechanical analysis of the forearc in the Maule earthquake area. Earth Planet Sci 381:92–103. doi: 10.1016/j.epsl.2013.07.037 CrossRefGoogle Scholar
  7. Das S, Henry C (2003) Spatial relation between main earthquake slip and its aftershock distribution. Rev Geophys 41:1013. doi: 10.1029/2002RG000119 CrossRefGoogle Scholar
  8. Engdahl R, Villaseñor A (2002) Global seismicity: 1900–1999. In: International Handbook of Earthquake and Engineering Seismology. Part A. Academic Press, California, pp 665–690CrossRefGoogle Scholar
  9. Fuenzalida A, Schurr B, Lancieri M, Sobiesiak M, Madariaga R (2013) High resolution relocation and mechanism of aftershocks of the 2007 Tocopilla (Chile) earthquake. Geophys J Int 194:1216–1238. doi: 10.1093/gji/ggt163 CrossRefGoogle Scholar
  10. Gardi A, Lemoine A, Madariaga R, Campos J (2006) Modeling of stress transfer in the Coquimbo region of central Chile. J Geophys Res 111:B04307. doi: 10.1029/2004JB003440 CrossRefGoogle Scholar
  11. Hayes GP, Wald DJ, Johnson RL (2012) Slab1.0: a three‐dimensional model of global subduction zone geometries. J Geophys Res 117:B01302. doi: 10.1029/2011JB008524 CrossRefGoogle Scholar
  12. Hayes GP, Herman MW, Barnhart WD, Furlong KP, Riquelme S, Benz HM, Bergman E, Barrientos S, Earle PS, Samsonov S (2014) Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature 512:295–298. doi: 10.1038/nature13677 CrossRefGoogle Scholar
  13. Herrmann RB (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 84:1081–1088. doi: 10.1785/0220110096 CrossRefGoogle Scholar
  14. Hubbard J, Barbot S, Hill EM, Tapponnier P (2015) Coseismic slip on shallow décollement megathrusts: implications for seismic and tsunami hazard. Earth Sci Rev 141:45–55. doi: 10.1016/j.earscirev.2014.11.003 CrossRefGoogle Scholar
  15. Husen S, Kissling E, Flueh E, Asch G (1999) Accurate hypocenter determination in the seismogenic zone of the subducting Nazca plate in north Chile using a combined on-/offshore network. Geophys J Int 138:687–701. doi: 10.1046/j.1365-246x.1999.00893.x CrossRefGoogle Scholar
  16. Kato A, Nakagawa S (2014) Multiple slow-slip events during a foreshock sequence of the 2014 Iquique, Chile Mw 8.1 earthquake. Geophys Res Lett 41:5420–5427. doi: 10.1002/2014GL061138 CrossRefGoogle Scholar
  17. Kausel E (1986) Los terremotos de agosto de 1868 y mayo de 1877 que afectaron el sur del Perú y norte de Chile. Boletín Academia Chilena Ciencias 3:8–14Google Scholar
  18. Kelleher J (1972) Rupture zones of large South American earthquakes and some predictions. J Geophys Res 77:2087–2103. doi: 10.1029/JB077i011p02087 CrossRefGoogle Scholar
  19. Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR, Ye L, Yue H, Rushing TM (2012) Depth-varying rupture properties of subduction zone megathrust faults. J Geophys Res 117:B04311. doi: 10.1029/2011JB009133 CrossRefGoogle Scholar
  20. Lay T, Yue H, Brodsky EE, An C (2014) The April 1, 2014 Iquique, Chile Mw 8.1 earthquake rupture sequence. Geophys Res Lett 41:3818–3825. doi: 10.1002/2014GL060238 CrossRefGoogle Scholar
  21. Lomax A, Virieux J, Volant P, Berge-Thierry C (2000) Probabilistic earthquake location in 3D and layered models. In: Advances in seismic event location. Springer, Netherlands, pp 101–134. doi: 10.1007/978-94-015-9536-0_5 CrossRefGoogle Scholar
  22. Maksymowicz A, Trehu A, Contreras Reyes E, Ruiz S (2015) Density-depth model of the continental wedge at the maximum slip segment of the Maule Mw8.8 megathrust earthquake. Earth Planet Sci 409:265–277. doi: 10.1016/j.epsl.2014.11.005 CrossRefGoogle Scholar
  23. Malgrange M, Madariaga R (1983) Complex distribution of large thrust and normal fault earthquakes in the Chilean subduction zone. Geophys J Int 73:489–505. doi: 10.1111/j.1365-246X.1983.tb03326.x CrossRefGoogle Scholar
  24. McCann WR, Nishenko SP, Sykes LR, Krause J (1979) Seismic gaps and plate tectonics: seismic potential for major boundaries. In Earth Prediction Seismicity Patterns 117:1082–1147. doi: 10.1007/978-3-0348-6430-5_2 CrossRefGoogle Scholar
  25. Meng L, Huang H, Bürgmann R, Ampuero JP, Strader A (2015) Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence. Earth Planet Sci Lett 411:177–187. doi: 10.1016/j.epsl.2014.11.041 CrossRefGoogle Scholar
  26. Montessus de Ballore F (1912) Historia sísmica de los Andes meridionales al sur del paralelo XVI. Imprenta Cervantes, Santiago, pp 545–591Google Scholar
  27. Métois M, Socquet A, Vigny C, Carrizo D, Peyrat S, Delorme A, Maureira E, Valderas Bermejo M, Ortega I (2013) Revisiting the North Chile seismic gap segmentation using GPS-derived interseismic coupling. Geophys J Int 194:1283–1294. doi: 10.1093/gji/ggt183 CrossRefGoogle Scholar
  28. Moscoso E, Grevemeyer I, Contreras Reyes E, Flueh ER, Dzierma Y, Rabbel W, Thorwart M (2011) Revealing the deep structure and rupture plane of the 2010 Maule, Chile Earthquake (Mw = 8.8) using wide angle seismic data. Earth Planet Sci 307:147–155CrossRefGoogle Scholar
  29. Nishenko SP (1985) Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: a quantitative reappraisal. J Geophys Res 90:3589–3615. doi: 10.1029/JB090iB05p03589 CrossRefGoogle Scholar
  30. Pacheco J, Sykes LR (1992) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82:1306–1349Google Scholar
  31. Peyrat S, Campos J, De Chabalier JB, Perez A, Bonvalot S, Bouin MP, Legrand D, Nercessian A, Charade O, Patau G, Clévédé E, Kausel E, Bernard P, Vilotte JP (2006) Tarapacá intermediate‐depth earthquake (Mw 7.7, 2005, northern Chile): a slab‐pull event with horizontal fault plane constrained from seismologic and geodetic observations. Geophys Res Lett 33:22. doi: 10.1029/2006GL027710 CrossRefGoogle Scholar
  32. Peyrat S, Madariaga R, Buforn E, Campos J, Asch G, Vilotte JP (2010) Kinematic rupture process of the 2007 Tocopilla earthquake and its main aftershocks from teleseismic and strong-motion data. Geophys J Int 182:1411–1430. doi: 10.1111/j.1365-246X.2010.04685.x CrossRefGoogle Scholar
  33. Ranero C, von Huene R, Weinrebe W, Reichert C (2006) Tectonic processes along the Chile convergent margin. In: The Andes. Springer, Berlin, pp 91–121. doi: 10.1007/978-3-540-48684-8_5 CrossRefGoogle Scholar
  34. Ruegg JC, Campos J, Armijo R, Barrientos S, Briole P, Thiele R, Arancibia M, Canuta J, Duquesnoy T, Chang M (1996) The Mw = 8.1 Antofagasta (North Chile) earthquake of July 30, 1995: first results from teleseismic and geodetic data. Geophys Res Lett 23:917–920. doi: 10.1029/96GL01026 CrossRefGoogle Scholar
  35. Ruiz S, Metois M, Fuenzalida A, Ruiz J, Leyton F, Grandin R, Vigny C, Madariaga R, Campos J (2014) Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1 earthquake. Science 345:1165–1169. doi: 10.1126/science.1256074 CrossRefGoogle Scholar
  36. Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42. doi: 10.1038/34097 CrossRefGoogle Scholar
  37. Schurr B, Asch G, Hainzl S, Bedford J, Hoechner A, Palo M, Wang R, Moreno M, Bartsch M, Zhang Y (2014) Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake. Nature 512:299–302. doi: 10.1038/nature13681 CrossRefGoogle Scholar
  38. Urrutia R, Lanza C (1993) Catástrofes en Chile 1541–1992. La Noria, Santiago of Chile, pp 30–31Google Scholar
  39. von Huene R, Culotta R (1989) Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophysics 160:75–90. doi: 10.1016/0040-1951(89)90385-5 CrossRefGoogle Scholar
  40. von Huene R, Ranero C (2003) Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta. Chile J Geophys Res 108:2079. doi: 10.1029/2001JB001569 Google Scholar
  41. Yagi Y, Okuwaki R, Enescu B, Hirano S, Yamagami Y, Endo S, Komoro T (2014) Rupture process of the 2014 Iquique Chile earthquake in relation with the foreshock activity. Geophys Res Lett 41(12):4201–4206. doi: 10.1002/2014GL060274
  42. Zhan Z, Helmberger D, Simons M, Kanamori H, Wu W, Cubas N, Duputel Z, Chu R, Tsai V, Avouac J (2012) Anomalously steep dips of earthquakes in the 2011 Tohoku-Oki source region and possible explanations. Earth Planet Sci 353:121–133. doi: 10.1016/j.epsl.2012.07.038 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Sergio León-Ríos
    • 1
  • Sergio Ruiz
    • 1
  • Andrei Maksymowicz
    • 1
  • Felipe Leyton
    • 2
  • Amaya Fuenzalida
    • 3
  • Raúl Madariaga
    • 4
  1. 1.Departamento de Geofísica, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Centro Sismológico Nacional, Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  3. 3.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
  4. 4.Laboratoire de GeologieUMR8538 CNRS Ecole Normale SuperieureParisFrance

Personalised recommendations