Journal of Seismology

, Volume 20, Issue 2, pp 555–567 | Cite as

A scheme to set preferred magnitudes in the ISC Bulletin

Original Article

Abstract

One of the main purposes of the International Seismological Centre (ISC) is to collect, integrate and reprocess seismic bulletins provided by agencies around the world in order to produce the ISC Bulletin. This is regarded as the most comprehensive bulletin of the Earth’s seismicity, and its production is based on a unique cooperation in the seismological community that allows the ISC to complement the work of seismological agencies operating at global and/or local-regional scale. In addition, by using the seismic wave measurements provided by reporting agencies, the ISC computes, where possible, its own event locations and magnitudes such as short-period body wave mb and surface wave MS. Therefore, the ISC Bulletin contains the results of the reporting agencies as well as the ISC own solutions. Among the most used seismic event parameters listed in seismological bulletins, the event magnitude is of particular importance for characterizing a seismic event. The selection of a magnitude value (or multiple ones) for various research purposes or practical applications is not always a straightforward task for users of the ISC Bulletin and related products since a multitude of magnitude types is currently computed by seismological agencies (sometimes using different standards for the same magnitude type). Here, we describe a scheme that we intend to implement in routine ISC operations to mark the preferred magnitudes in order to help ISC users in the selection of events with magnitudes of their interest.

Keywords

Earthquake magnitude Seismological bulletins 

Notes

Acknowledgments

We thank Bruce Presgrave for the information regarding the generic magnitude MG. Also, thanks to all agencies that took time and effort to put their magnitude procedures available to us. This work is supported by the National Science Foundation Grant EAR-1417970 and USGS Grant G14AC00149.

Compliance with ethical standards

Data and resources

The data used in this work is freely available via the ISC website (www.isc.ac.uk). The figures were drawn using the Generic Mapping Tool (GMT, Wessel and Smith 1998) software.

References

  1. Assumpção M (1983) A regional magnitude scale for Brazil. Bull Seism Soc Am 73(1):237–246Google Scholar
  2. Bistricsany EA (1958) A new method for the determination of the magnitude of earthquakes. Geofiz Kozl 7:69–76Google Scholar
  3. Bondár I, Storchak DA (2011) Improved location procedures at the international seismological centre. Geophys J Int 186:1220–1244. doi:10.1111/j.1365-246X.2011.05107.x CrossRefGoogle Scholar
  4. Bonner JL, Russell DR, Harkrider DG, Reiter DT, Hermann RB (2006) Development of a time-domain, variable-period surface-wave magnitude measurement procedure for application at regional and teleseismic distances, part II: application and M Sm b performance. Bull Seism Soc Am 96(2):678–696. doi:10.1785/0120050056 CrossRefGoogle Scholar
  5. Bormann P (2011) Earthquake magnitude. In: Harsh Gupta (ed.): Encyclopedia of solid earth geophysics, Springer, 207-218; doi: 10.1007/978-90-481-8702-7
  6. Bormann P, Di Giacomo D (2011) The moment magnitude M W and the energy magnitude M E: common roots and differences. J Sesm 15:411–427. doi:10.1007/s10950-010-9219-2 CrossRefGoogle Scholar
  7. Bormann P, Saul J (2008) The new IASPEI standard broadband magnitude m B. Seism Res Lett 79(5):698–705. doi:10.1785/gssrl.79.5.698 CrossRefGoogle Scholar
  8. Bormann P, Liu R, Ren X, Gutdeutsch R, Kaiser D, Castellaro S (2007) Chinese national network magnitudes, their relation to NEIC magnitudes and recommendations for new IASPEI magnitude standards. Bull Seism Soc Am 97(1B):114–127. doi:10.1785/0120060078 CrossRefGoogle Scholar
  9. Bormann P, Wendt S, Di Giacomo D (2013) Seismic sources and source parameters. Chapter 3, in Bormann, P. (Ed.) New Manual of Seismological Observatory Practice (NMSOP-2), 259 p. (available at http://bib.telegrafenberg.de/publizieren/vertrieb/nmsop/, last accessed December 2013)
  10. Choy GL, Boatwright JL (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100(B9):18,205–18,288CrossRefGoogle Scholar
  11. Di Giacomo D, Parolai S, Bormann P, Grosser H, Saul J, Wang R, Zschau J (2010) Suitability of rapid energy magnitude determinations for emergency response purposes. Geophys J Int 180:361–374. doi:10.1111/j.1365-246X.2009.04416.x CrossRefGoogle Scholar
  12. Di Giacomo D, Bondár I, Storchak DA, Engdahl ER, Bormann P, Harris J (2015) ISC-GEM: global instrumental earthquake catalogue (1900-2009): III. Re-computed M S and m b, proxy M W, final magnitude composition and completeness assessment. Phys Earth Planet Int 239:33–47. doi:10.1016/j.pepi.2014.06.005 CrossRefGoogle Scholar
  13. Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86(B4):2825–2852CrossRefGoogle Scholar
  14. Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Plan Int 200-201:1–9CrossRefGoogle Scholar
  15. Engdahl ER, Gunst RH (1966) Use of high speed computer for the preliminary determination of earthquake hypocentres. Bull Seism Soc Am 56(2):325–336Google Scholar
  16. Engdahl ER, Villaseñor A (2002) Global seismicity: 1900-1999. in International Handbook of Earthquake and Engineering Seismology, Part A, 665-690, ed. Lee, W.H.K., Kanamori, H., Jennings, J. C., & Kisslinger, C., Academic Press, San DiegoGoogle Scholar
  17. Gutenberg B (1945a) Amplitude of surface waves and magnitude of shallow earthquakes. Bull Seism Soc Am 35:3–12Google Scholar
  18. Gutenberg B (1945b) Amplitudes of P, PP, and S and magnitude of shallow earthquakes. Bull Seism Soc Am 35:57–69Google Scholar
  19. Gutenberg B (1945c) Magnitude determination of deep-focus earthquakes. Bull Seism Soc Am 35:117–130Google Scholar
  20. Hanks C, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350CrossRefGoogle Scholar
  21. Hayes GP, Rivera L, Kanamori H (2009) Source inversion of the W-phase: real-time implementation and extension to low magnitudes. Seism Res Lett 80:817–822. doi:10.1785/gssrl.80.5.817 CrossRefGoogle Scholar
  22. Hutton LK, Boore DM (1987) The M L scale in southern California. Bull Seism Soc Am 77:2074–2094Google Scholar
  23. IASPEI (2005) Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data (available online at http://www.iaspei.org/commissions/CSOI/summary_of_WG_recommendations_2005.pdf, last accessed September 2015)
  24. IASPEI (2013) Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data (available online at http://www.iaspei.org/commissions/CSOI/Summary_WG_recommendations_20130327.pdf, last accessed September 2015)
  25. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987CrossRefGoogle Scholar
  26. Nuttli OW (1973) Seismic wave attenuation and magnitude relations for eastern North America. J Geophys Res 78:876–885. doi:10.1029/JB078i005p00876 CrossRefGoogle Scholar
  27. Rautian TG, Khalturin VI, Fujita K, Mackey KG, Kendall AD (2007) Origins and methodology of the Russian energy K-Class system and its relationship to magnitude scales. Seism Res Lett 78(6):579–590CrossRefGoogle Scholar
  28. Richter CF (1935) An instrumental earthquake magnitude scale. Bull Seism Soc Am 25(1):1–32Google Scholar
  29. Ringdal F (1976) Maximum-likelihood estimation of seismic magnitude. Bull Seism Soc Am 72:S201–S224Google Scholar
  30. Tsuboi C (1954) Determination of the Gutenberg-Richter’s magnitude of shallow earthquakes occurring in and near Japan (in Japanese). Zisin 2:185–193Google Scholar
  31. Tsuboi S, Abe K, Takano K, Yamanaka Y (1995) Rapid determination of M W from broadband P waveforms. Bull Seism Soc Am 85(2):606–613Google Scholar
  32. Wessel P, Smith WHF (1998) New, improved version of the generic mapping tools released. EOS Trans AGU 79(47):579. doi:10.1029/98EO00426 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.International Seismological CentreThatchamUK

Personalised recommendations