Journal of Seismology

, Volume 19, Issue 2, pp 329–340 | Cite as

Wavelet-based coherence measures of global seismic noise properties

Original Article

Abstract

The coherent behavior of four parameters characterizing the global field of low-frequency (periods from 2 to 500 min) seismic noise is studied. These parameters include generalized Hurst exponent, multifractal singularity spectrum support width, the normalized entropy of variance, and kurtosis. The analysis is based on the data from 229 broadband stations of GSN, GEOSCOPE, and GEOFON networks for a 17-year period from the beginning of 1997 to the end of 2013. The entire set of stations is subdivided into eight groups, which, taken together, provide full coverage of the Earth. The daily median values of the studied noise parameters are calculated in each group. This procedure yields four 8-dimensional time series with a time step of 1 day with a length of 6209 samples in each scalar component. For each of the four 8-dimensional time series, a multiple correlation measure is estimated, which is based on computing robust canonical correlations for the Haar wavelet coefficients at the first detail level within a moving time window of the length 365 days. These correlation measures for each noise property demonstrate essential increasing starting from 2007 to 2008 which was continued till the end of 2013. Taking into account a well-known phenomenon of noise correlation increasing before catastrophes, this increasing of seismic noise synchronization is interpreted as indicators of the strongest (magnitudes not less than 8.5) earthquakes activation which is observed starting from the Sumatra mega-earthquake of 26 Dec 2004. This synchronization continues growing up to the end of the studied period (2013), which can be interpreted as a probable precursor of the further increase in the intensity of the strongest earthquakes all over the world.

Keywords

Global low-frequency seismic noise Synchronization Multifractals Normalized entropy of variance Kurtosis Wavelet-based robust canonical correlations Global seismic activity 

References

  1. Ardhuin F, Stutzmann E, Schimmel M, Mangeney A (2011) Ocean wave sources of seismic noise. J Geophys Res 116:C09004Google Scholar
  2. Aster R, McNamara D, Bromirski P (2008) Multidecadal climate induced variability in microseisms. Seismol Res Lett 79:194–202CrossRefGoogle Scholar
  3. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260CrossRefGoogle Scholar
  4. Berger J, Davis P, Ekstrom G (2004) Ambient earth noise: a survey of the Global Seismographic Network. J Geophys Res 109:B11307Google Scholar
  5. Bonnefoy-Claudet S, Cotton F, Bard P-Y (2006) The nature of noise wavefield and its applications for site effects studies: a literature review. Earth Sci Rev 79:205CrossRefGoogle Scholar
  6. Brenguier F, Shapiro N, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Toward forecasting volcanic eruption using seismic noise. Nat Geosci 1:126–130CrossRefGoogle Scholar
  7. Brenguier F, Clarke D, Aoki Y, Shapiro NM, Campillo M, Ferrazzini V (2011) Monitoring volcanoes using seismic noise correlations. Compt Rendus Geosci 343:633–638CrossRefGoogle Scholar
  8. Campillo M (2006) Phase and correlation in “Random” seismic fields and the reconstruction of the green function. Pure Appl Geophys 163:475–502CrossRefGoogle Scholar
  9. Campillo M, Paul A (2003a) Long-range correlations in the diffuse seismic coda. Science 299(5606):547–549CrossRefGoogle Scholar
  10. Campillo M, Paul A (2003b) Long-range correlations in the seismic coda. Science 299:547–549CrossRefGoogle Scholar
  11. Cramer H (1999) Mathematical methods of statistics. Princeton University Press, 575 ppGoogle Scholar
  12. Currenti G, del Negro C, Lapenna V, Telesca L (2005) Multifractality in local geomagnetic field at Etna volcano, Sicily (southern Italy). Nat Hazards Earth Syst Sci 5:555–559CrossRefGoogle Scholar
  13. Feder J (1988) Fractals. Plenum Press, New YorkCrossRefGoogle Scholar
  14. Friedrich A, Krüger F, Klinge K (1998) Ocean-generated microseismic noise located with the Gräfenberg array. J Seismol 2(1):47–64CrossRefGoogle Scholar
  15. Fukao YK, Nishida K, Kobayashi N (2010) Seafloor topography, ocean infragravity waves, and background love and Rayleigh waves. J Geophys Res 115:B04302Google Scholar
  16. Gilmore R (1981) Catastrophe theory for scientists and engineers. Wiley, New YorkGoogle Scholar
  17. Grevemeyer I, Herber R, Essen H-H (2000) Microseismological evidence for a changing wave climate in the northeast Atlantic Ocean. Nature 408:349–352CrossRefGoogle Scholar
  18. Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377CrossRefGoogle Scholar
  19. Huber PJ, Ronchetti EM (2009) Robust statistics, 2nd Edition. John Wiley & Sons, Inc. 354 p. doi:10.1002/9780470434697.ch1
  20. Ida Y, Hayakawa M, Adalev A, Gotoh K (2005) Multifractal analysis for the ULF geomagnetic data during the 1993 Guam earthquake. Nonlinear Process Geophys 12:157–162CrossRefGoogle Scholar
  21. Kantelhardt JW, Zschiegner SA, Konscienly-Bunde E, Havlin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316:87–114CrossRefGoogle Scholar
  22. Kedar S, Longuet-Higgins M, Webb F, Graham N, Clayton R, Jones C (2008) The origin of deep ocean microseisms in the North Atlantic Ocean. Proc R Soc A 464:777–793CrossRefGoogle Scholar
  23. Kobayashi N, Nishida K (1998) Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395:357–360CrossRefGoogle Scholar
  24. Koper KD, de Foy B (2008) Seasonal anisotropy in short-period seismic noise recorded in South Asia. Bull Seismol Soc Am 98:3033–3045CrossRefGoogle Scholar
  25. Koper KD, Seats K, Benz H (2010) On the composition of earth’s short-period seismic noise field. Bull Seismol Soc Am 100(2):606–617, April 2010CrossRefGoogle Scholar
  26. Landes M, Hubans F, Shapiro N, Paul A, Campillo M (2010) Origin of deep ocean microseisms by using teleseismic body waves. J Geophys Res 115:B05302Google Scholar
  27. Lawrence JF, Prieto GA (2011) Attenuation tomography of the western united states from ambient seismic noise. J Geophys Res 116:B06302Google Scholar
  28. Lyubushin AA (2008) Microseismic noise in the low frequency range (periods of 1–300 min): properties and possible prognostic features. Izv Phys Solid Earth 44(4):275–290CrossRefGoogle Scholar
  29. Lyubushin AA (2009) Synchronization trends and rhythms of multifractal parameters of the field of low-frequency microseisms—Izvestiya. Phys Solid Earth 45(5):381–394CrossRefGoogle Scholar
  30. Lyubushin A (2010) Multifractal parameters of low-frequency microseisms // V. de Rubeis et al. (eds.) Synchronization and triggering: from fracture to earthquake processes, GeoPlanet: Earth Planet Sci 1, doi:10.1007/978-3-642-12300-9_15, Springer-Verlag Berlin Heidelberg 2010, 388p., Chapter 15, 253-272
  31. Lyubushin AA (2011a) Cluster analysis of low-frequency microseismic noise—Izvestiya. Phys Solid Earth 47(6):488–495CrossRefGoogle Scholar
  32. Lyubushin AA (2011b) Seismic catastrophe in Japan on March 11, 2011: long-term prediction on the basis of low-frequency microseisms—Izvestiya. Atmos Ocean Phys 46(8):904–921Google Scholar
  33. Lyubushin A (2012) Prognostic properties of low-frequency seismic noise. Nat Sci 4(8A):659–666. doi:10.4236/ns.2012.428087 Google Scholar
  34. Lyubushin AA (2013a) Mapping the properties of low-frequency microseisms for seismic hazard assessment. Izv Phys Solid Earth 49(1):9–18. doi:10.1134/S1069351313010084 CrossRefGoogle Scholar
  35. Lyubushin A (2013b) How soon would the next mega-earthquake occur in Japan? Nat Sci 5(8A1):1–7. doi:10.4236/ns.2013.58A1001 Google Scholar
  36. Lyubushin AA (2014) Dynamic estimate of seismic danger based on multifractal properties of low-frequency seismic noise. Nat Hazards 70(1):471–483CrossRefGoogle Scholar
  37. Lyubushin AA, Kaláb Z, Lednická M (2012) Geomechanical time series and its singularity spectrum analysis. Acta Geodaet Geophys Hung 47(1):69–77CrossRefGoogle Scholar
  38. Lyubushin AA, Kaláb Z, Lednická M, Haggag HM (2013) Discrimination of earthquakes and explosions using multi-fractal singularity spectrums properties. J Seismol 17(3):975–983CrossRefGoogle Scholar
  39. Lyubushin AA, Kaláb Z, Lednická M (2014) Statistical properties of seismic noise measured in underground spaces during seismic swarm. Acta Geodaetica Geophysica 49(2):209–224CrossRefGoogle Scholar
  40. Mallat S (1998) A wavelet tour of signal processing. Academic, San Diego, p 577Google Scholar
  41. McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94:1517–1527CrossRefGoogle Scholar
  42. Nicolis G, Prigogine I (1989) Exploring complexity, an introduction. W.H. Freedman and Co., New YorkGoogle Scholar
  43. Nishida K, Kawakatsu H, Fukao Y, Obara K (2008) Background love and Rayleigh waves simultaneously generated at the Pacific Ocean floors. Geophys Res Lett 35:L16307CrossRefGoogle Scholar
  44. Nishida K, Montagner J, Kawakatsu H (2009) Global surface wave tomography using seismic hum. Science 326(5949):112CrossRefGoogle Scholar
  45. Poli P, Campillo M, Pedersen H, the Lapnet Working Group (2012) Body wave imaging of the Earth’s mantle discontinuities from ambient seismic noise. Science 338:1063–1065CrossRefGoogle Scholar
  46. Ramirez-Rojas A, Munoz-Diosdado A, Pavia-Miller CG, Angulo-Brown F (2004) Spectral and multifractal study of electroseismic time series associated to the Mw = 6.5 earthquake of 24 October 1993 in Mexico. Nat Hazards Earth Syst Sci 4:703–709CrossRefGoogle Scholar
  47. Rao CR (1965) Linear statistical inference and its applications. (Wiley, LondonGoogle Scholar
  48. Rhie J, Romanowicz B (2004) Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling. Nature 431:552–554CrossRefGoogle Scholar
  49. Rhie J, Romanowicz B (2006) A study of the relation between ocean storms and the Earth’s hum. Geochem Geophys Geosyst, Electron J Earth Sci, Volume 7, Number 10Google Scholar
  50. Schimmel M, Stutzmann E, Ardhuin F, Gallart J (2011) Polarized Earth’s ambient microseismic noise. Geochem Geophys Geosyst 12:Q07014CrossRefGoogle Scholar
  51. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High resolution surface wave tomography from ambient seismic noise. Science 307:1615–1618CrossRefGoogle Scholar
  52. Shapiro NM, Ritzwoller MH, Bensen GD (2006) Source location of the 26 s microseism from cross correlations of ambient seismic noise. Geophys Res Lett 33:L18310CrossRefGoogle Scholar
  53. Stehly L, Campillo M, Shapiro NM (2006) A study of the seismic noise from its long-range correlation properties. J Geophys Res 111:B10306CrossRefGoogle Scholar
  54. Tanimoto T (2001) Continuous free oscillations: atmosphere-solid earth coupling. Annu Rev Earth Planet Sci 29:563–84CrossRefGoogle Scholar
  55. Tanimoto T (2005) The oceanic excitation hypothesis for the continuous oscillations of the earth. Geophys J Int 160:276–288CrossRefGoogle Scholar
  56. Taqqu MS (1988) Self-similar processes. Encyclopedia of statistical sciences, vol 8. Wiley, New York, pp 352–357Google Scholar
  57. Telesca L, Colangelo G, Lapenna V (2005) Multifractal variability in geoelectrical signals and correlations with seismicity: a study case in southern Italy. Nat Hazards Earth Syst Sci 5:673–677CrossRefGoogle Scholar
  58. Yang Y, Ritzwoller MH (2008) Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem Geophys Geosyst 9:Q02008CrossRefGoogle Scholar
  59. Zhang J, Gerstoft P, Shearer PM (2009) High-frequency P-wave seismic noise driven by ocean winds. Geophys Res Lett 36:L09302Google Scholar
  60. Zhang J, Gerstoft P, Shearer P (2010a) Resolving P-wave traveltime anomalies using seismic array observations of oceanic storms. Earth Planet Sci Lett 292:419–427CrossRefGoogle Scholar
  61. Zhang J, Gerstoft P, Bromirski PD (2010b) Pelagic and coastal sources of P-wave microseisms: generation under tropical cyclones. Geophys Res Lett 37:L15301Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Physics of the Earth, Russian Academy of Sciences, MoscowMoscowRussia

Personalised recommendations