Skip to main content
Log in

Prediction of magnitude of the largest potentially induced seismic event

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We propose a method for determining the possible magnitude of a potentially largest induced seismic event derived from the Gutenberg–Richter law and an estimate of total released seismic moment. We emphasize that the presented relationship is valid for induced (not triggered) seismicity, as the total seismic moment of triggered seismicity is not bound by the injection. The ratio of the moment released by the largest event and weaker events is determined by the constants a and b of the Gutenberg–Richter law. We show that for a total released seismic moment, it is possible to estimate number of events greater than a given magnitude. We determine the formula for the moment magnitude of a probable largest seismic event with one occurrence within the recurrence interval (given by one volumetric change caused by mining or injecting). Finally, we compare theoretical and measured values of the moment magnitudes of the largest induced seismic events for selected geothermal and hydraulic fracturing projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aki K (1981) A probabilistic synthesis of precursors phenomena. Earthquake prediction. Maurice Ewing series, 4 ed. Simson and Richards, AGU: Washington D.C., pp 566–575.

  • Aki K, Richards PG (1980) Quantitative seismology theory and methods. W.H. Freeman, San Francisco

    Google Scholar 

  • Anderson JG, Luco JE (1983) Consequences of slip rate constraints on earthquake occurrence relation. Bull Seism Soc Am 73:471–496

    Google Scholar 

  • Bachmann CE, Wiemer S, Woessner J, Hainzl S (2011) Statistical analysis of the induced Basel 2006 earthquake sequence: introducing a probability-based monitoring approach for enhanced geothermal systems. Geophys J Int 186:793–807

    Article  Google Scholar 

  • Baisch S, Carbon D, Dannwolf U, Delacou B, Devaux M, Dunand F, Jung R, Koller M, Martin C, Sartori M, Secanell R, Vörös R (2009a) Deep heat mining Basel—seismic risk analysis. SERIANEX study prepared for the Departement für Wirtschaft, Soziales und Umwelt des Kantons Basel-Stadt, Amt für Umwelt und Energie. http://www.wsu.bs.ch/geothermie.

  • Baisch S, Vörös R, Weidler R, Wyborn D (2009b) Investigation of fault mechanisms during geothermal reservoir stimulation experiments in the Cooper Basin, Australia. Bull Seismol Soc Am 99(1):148–158

    Article  Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686

    Article  Google Scholar 

  • Barton D, Foulger G, Henderson J, Julian B (1999) Frequency magnitude statistics and spatial correlation dimensions of earthquakes at Long Valley caldera, California. Geophys J Int 138:563–570

    Article  Google Scholar 

  • Blewitt G, Coolbaugh M, Holt W, Kreemer C, Davis JL, Bennettal RA (2002) Targeting of potential geothermal resources in the Great Basin from regional relationships between geodetic strain and geological structures. Transactions Geothermal Resources Council 26:523–526

    Google Scholar 

  • Charlety J, Cuenot N, Dorbath L, Dorbath C, Haessler H, Frogneux M (2007) Large earthquakes during hydraulic stimulations at the geothermal site of Soultz-sous-Forets. International Journal of Rock Mechanics & Mining Sciences 44:1091–1105

    Article  Google Scholar 

  • Christensen K, Olami Z (1992) Variation of the Gutenberg-Richter b values and nontrivial temporal correlations in a spring-block model for earthquakes. J Geophys Res 97(B6):8729–8735

    Article  Google Scholar 

  • Dahm T, Becker D, Bischoff M, Cesca S, Dost B, Fritschen R, Hainzl S, Klose CD, Kühn D, Lasocki S, Meier T, Ohrnberger M, Rivalta E, Wegler U (2013) Recommendation for the discrimination of human-related and natural seismicity. J Seismol 17:197–202

    Article  Google Scholar 

  • ECOS (2002) Swiss Seismological Service, Earthquake Hazard and Risk, Earthquake Catalog of Switzerland. http://histserver.ethz.ch. Accessed 7 Aug 2013.

  • Eisner L, Janská E, Oprsal I, Matoušek P (2011) Seismic analysis of the events in the vicinity of the Preese Hall well. In: Pater CJ, Baisch S, Geomechanical study of Bowland Shale seismicity—appendix 3. http://www.cuadrillaresources.com/wp-content/uploads/2012/02/Geomechanical-Study-Appendix-3-2.11.2011.pdf.

  • Frohlich C, Hayward C, Stump B, Potter E (2011) The Dallas–Fort Worth earthquake sequence: October 2008 through May 2009. Bull Seismol Soc Am 101(1):327–340

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Hallo M, Eisner L, Mohammed YA (2012) Expected level of seismic activity caused by volumetric changes. First Break 30:97–100

    Google Scholar 

  • Healy JH, Rubey WW, Griggs DT, Raleigh CB (1968) The Denver earthquakes. Science 161:1,301–1,310

    Article  Google Scholar 

  • Henderson J, Main I, Pearce R, Takeya M (1994) Seismicity in north-eastern Brazil: fractal clustering and the evolution of the b value. Geophys J Int 116:217–226

    Article  Google Scholar 

  • Hickman S, Barton CA, Zoback MD, Morin R, Sass J, Benoit R (1997) In situ stress and fracture permeability along the Stillwater fault zone, Dixie Valley, Nevada. Int J Rock Mech Min Sci 34(3):414

    Article  Google Scholar 

  • Hirata T (1989) A correlation between the b value and the fractal dimension of earthquakes. J Geophys Res 94:7507–7514

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82(20):2981–2987

    Article  Google Scholar 

  • Kanamori H, Anderson L (1975) Theoretical basis of some empirical relations in seismology. Bull Seism Soc Am 65:1073–1095

    Google Scholar 

  • King G (1983) The accommodation of large strains in the upper lithosphere of the earth and other solids by self-similar fault systems: the geometrical origin of b-value. Pageoph 121:761–815

    Article  Google Scholar 

  • Lasocki S, Orlecka-Sikora B (2008) Seismic hazard assessment under complex source size distribution of mining-induced seismicity. Tectonophysics 456(1–2):28–37

    Article  Google Scholar 

  • Mahrer K, Ake J, Block L, O’Connell D, Bundy J (2005) Injecting brine and inducing seismicity at the world’s deepest injection well, Paradox Valley, Southwest Colorado. Dev Water Sci 52:361–375

    Article  Google Scholar 

  • Manin YI (2006) The notion of dimension in geometry and algebra. Bull Am Math Soc New Ser 43(2):139–161

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook, second edition: tools for seismic analysis of porous media. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Maxwell SC, Shemeta J, Campbell E, Quirk D (2009) Microseismic deformation rate monitoring. EAGE Passive Seismic Workshop, Cyprus, A18.

  • Maxwell SC, Rutledge J, Jones R, Fehler M (2010) Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 75(5):129–137

    Article  Google Scholar 

  • McGarr A (1976) Seismic moments and volume changes. J Geophys Res 81(8):1487–1494

    Article  Google Scholar 

  • Mukuhira Y, Asanuma H, Niitsuma H, Schanz U, Haring M (2008) Characterization of microseismic events with larger magnitude collected at Basel, Switzerland in 2006. Geothermal Resources Council Transactions 32:87–94

    Google Scholar 

  • Rutledge JT, Phillips WS (2003) Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, East Texas. Geophysics 68:441–452. doi:10.1190/1.1567214

    Article  Google Scholar 

  • Rutledge JT, Phillips WS, Mayerhofer MJ (2004) Faulting induced by forced fluid injection and fluid flow forced by faulting: an interpretation of hydraulic-fracture microseismicity, Carthage Cotton Valley Gas Field. Bull Seismol Soc Am 94(5):1817–1830

    Article  Google Scholar 

  • Sammis CG, Saito M, King GCP (1993) Fractals and chaos in the earth sciences. Pure App Geo (Pageoph Topical Volumes) 138(4):532–706

    Google Scholar 

  • Scholz C (2002) The mechanics of earthquakes and faulting, 2nd edn. Columbia University, New York. ISBN 9780521655408

    Book  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542

    Article  Google Scholar 

  • Shapiro SA, Dinske C, Langenbruch C, Wenzel F (2010) Seismological index and magnitude probability of earthquakes induced during reservoir fluid stimulations. Lead Edge 29:304–309

    Article  Google Scholar 

  • Shapiro SA, Krüger OS, Dinske C (2013) Probability of inducing given-magnitude earthquakes by perturbing finite volumes of rocks. J Geophys Res Solid Earth 118:1–19. doi:10.1002/jgrb.50264

    Article  Google Scholar 

  • Turcotte DL (1989) A fractal approach to probabilistic seismic hazard assessment. Tectonophysics 167:171–177

    Article  Google Scholar 

  • Urbancic TI, Trifu CI, Mercer RA, Feustel AJ, Alexander JAG (1996) Automatic time-domain calculation of source parameters for the analysis of induced seismicity. Bulletin of Seismological society of America 86(5):1627–1633

    Google Scholar 

  • USGS (2012) United States Geological Survey’s (USGS) Earthquake Hazards Program, Global Earthquake Search. http://earthquake.usgs.gov/earthquakes/eqarchives/. Accessed 7 Aug 2013.

  • Vulgamore T, Clawson T, Pope C, Wolhart S, Mayerhofer M, Machovoe S, Waltman C (2007) Applying hydraulic fracture diagnostics to optimize stimulations in the Woodford Shale, SPE Annual Technical Conference and Exhibition, paper SPE 110029, Anaheim.

Download references

Acknowledgments

We are grateful to the Oil-Subcommittee of the Abu Dhabi National Oil Company (ADNOC) and its operating companies (OpCos) for sponsoring the pilot project “Microseismic Feasibility Study”. This study was supported by the Grant Agency of the Czech Republic P210/12/2451. We would like to also thank anonymous reviewers for very valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Hallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallo, M., Oprsal, I., Eisner, L. et al. Prediction of magnitude of the largest potentially induced seismic event. J Seismol 18, 421–431 (2014). https://doi.org/10.1007/s10950-014-9417-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-014-9417-4

Keywords

Navigation