Journal of Seismology

, Volume 17, Issue 2, pp 507–521 | Cite as

Earthquake source parameters and scaling relationships in Hungary (central Pannonian basin)

  • Bálint Süle
  • Zoltán Wéber
Original Article


Fifty earthquakes that occurred in Hungary (central part of the Pannonian basin) with local magnitude \(M_\textrm{L}\) ranging from 0.8 to 4.5 have been analyzed. The digital seismograms used in this study were recorded by six permanent broadband stations and 20 short-period ones at hypocentral distances between 10 and 327 km. The displacement spectra for P- and SH-waves were analyzed according to Brune’s source model. Observed spectra were corrected for path-dependent attenuation effects using an independent regional estimate of the quality factor Q S . To correct spectra for near-surface attenuation, the κ parameter was calculated, obtaining it from waveforms recorded at short epicentral distances. The values of the κ parameter vary between 0.01 and 0.06 s with a mean of 0.03 s for P-waves and between 0.01 and 0.09 s with a mean of 0.04 s for SH-waves. After correction for attenuation effects, spectral parameters (corner frequency and low-frequency spectral level) were estimated by a grid search algorithm. The obtained seismic moments range from 4.21×1011 to 3.41×1015 Nm (1.7 ≤ M w  ≤ 4.3). The source radii are between 125 and 1,343 m. Stress drop values vary between 0.14 and 32.4 bars with a logarithmic mean of 2.59 bars (1 bar = 105 Pa). From the results, a linear relationship between local and moment magnitudes has been established. The obtained scaling relations show slight evidence of self-similarity violation. However, due to the high scatter of our data, the existence of self-similarity cannot be excluded.


Spectral analysis Source parameters Moment magnitude Scaling relations κ parameter Hungary 



The reported investigation was financially supported by the Hungarian Scientific Research Fund (no. K68308). We are grateful to Georisk Ltd. for providing the waveform data recorded by the Paks Microseismic Monitoring Network. We also thank two anonymous reviewers for their valuable comments and constructive suggestions. Figures were prepared using the GMT software (Wessel and Smith 1998).


  1. Abercrombie RE (1995) Earthquake source scaling relationships from −1 to 5 M L using seismograms recorded at 2.5-km depth. J Geophys Res 100:24015–24036CrossRefGoogle Scholar
  2. Abercrombie RE, Leary PC (1993) Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: implications for earthquake scaling. Geophys Res Lett 20:1511–1514CrossRefGoogle Scholar
  3. Aki K, Richards P (1980) Quantitative seismology: theory and methods. Freeman, San FranciscoGoogle Scholar
  4. Akkar S, Bommer JJ (2007) Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East. Bull Seismol Soc Am 97:511–530CrossRefGoogle Scholar
  5. Allen TI, Gibson G, Brown A, Cull JP (2004) Depth variation of seismic source scaling relation: implications for earthquake hazard in southern Australia. Tectonophysics 390:5–24CrossRefGoogle Scholar
  6. Anderson DL, Ben-Menahem A, Archambeau CB (1965) Attenuation of seismic energy in the upper mantle. J Geophys Res 70:1441–1448CrossRefGoogle Scholar
  7. Archuleta RJ, Cranswick E, Mueller C, Spudich P (1982) Source parameters of the 1980 Mammoth Lakes, California, earthquake sequence. J Geophys Res 87:4595–4607CrossRefGoogle Scholar
  8. Atkinson GM, Boore DM (2006) Earthquake ground-motion prediction equations for eastern North America. Bull Seismol Soc Am 96:2181–2205CrossRefGoogle Scholar
  9. Babuska V, Plomerová J, Sileny J (1987) Structural model of the subcrustal lithosphere in central Europe. In: Fuchs K, Froidevaux C (eds) Composition, structure and evolution of the lithosphere-asthenosphere system. AGU Geodyn Ser 16:239–251Google Scholar
  10. Bada G, Horváth F, Gerner P, Fejes I (1999) Review of the present-day geodynamics of the Pannonian basin: progress and problems. J Geodyn 27:501–527CrossRefGoogle Scholar
  11. Badawy A (2000) P-wave spectra of the Füzesgyarmat, eastern Hungary earthquake sequence. J Seismol 4:49–58CrossRefGoogle Scholar
  12. Badawy A, Horváth F, Tóth L (2001) Source parameters and tectonic interpretation of recent earthquakes (1996–1997) in the Pannonian basin. J Geodyn 31:87–103CrossRefGoogle Scholar
  13. Bakun WH, Joyner W (1984) The M L scale in Central California. Bull Seismol Soc Am 74:1827–1843Google Scholar
  14. Bindi D, Spallarossa D, Augliera P, Cattaneo M (2001) Source parameters estimated from the aftershocks of the 1997 Umbria–Marche (Italy) seismic sequence. Bull Seismol Soc Am 91:448–455CrossRefGoogle Scholar
  15. Boatwright J, Fletcher JB, Fumal TE (1991) A general inversion scheme for source, site, and propagation characteristics using multiply recorded sets of moderate-sized eartquakes. Bull Seismol Soc Am 81:1754–1782Google Scholar
  16. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160:635–676CrossRefGoogle Scholar
  17. Boore DM, Boatwright J (1984) Average body-wave radiation coefficients. Bull Seismol Soc Am 74:1615–1621Google Scholar
  18. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 75:4997–5009CrossRefGoogle Scholar
  19. Chouet B, Aki K, Tsujiura M (1978) Regional variation of the scaling law of earthquake source spectra. Bull Seismol Soc Am 68:49–79Google Scholar
  20. Drouet S, Cotton F, Guéguen P (2010) v S30, κ, regional attenuation and M w from accelerograms: application to magnitude 3–5 French earthquakes. Geophys J Int 182:880–898CrossRefGoogle Scholar
  21. Dysart PS, Snoke JA, Sacks IS (1988) Source parameters and scaling relations for small earthquakes in the Matsushiro region, southwest Honshu, Japan. Bull Seismol Soc Am 78:571–589Google Scholar
  22. Fletcher JB (1980) Spectra from high-dynamic range digital recordings of Oroville, California, aftershocks and their source parameters. Bull Seismol Soc Am 70:735–755Google Scholar
  23. Franceschina G, Kravanja S, Bressan G (2006) Source parameters and scaling relationships in the Friuli-Venezia Giulia (Northeastern Italy) region. Phys Earth Planet Inter 154:148–167CrossRefGoogle Scholar
  24. García-García JM, Romacho MD, Jiménez A (2004) Determination of near-surface attenuation, with κ parameter, to obtain the seismic moment, stress drop, source dimension and seismic energy for microearthquakes in the Granada Basin (Southern Spain). Phys Earth Planet Inter 141:9–26CrossRefGoogle Scholar
  25. Gerner P, Bada G, Dövényi P, Müller B, Oncescu MC, Cloetingh S, Horváth F (1999) Recent tectonic stress and crustal deformation in and around the Pannonian basin: data and models. In: Durand B, Jolivet L, Horváth F, Seranne M (eds) The Mediterranean basins: tertiary extension within the Alpine Orogen, vol 156. Geological Society, Special Publications, London, pp 269–294Google Scholar
  26. Hanks TC, Wyss M (1972) The use of body-wave spectra in the determination of seismic-source parameters. Bull Seismol Soc Am 62:561–589Google Scholar
  27. Hanks TC, Kanamori H (1979) A moment-magnitude scale. J Geophys Res84:2348–2350CrossRefGoogle Scholar
  28. Havskov J, Ottemöller L (2010) Routine data processing in earthquake seismology. Springer, DordrechtCrossRefGoogle Scholar
  29. Havskov J, Peña JA, Ibáñez JM, Ottemöller L, Martínez-Arévalo C (2003) Magnitude scales for very local earthquakes. Application for deception Island Volcano (Antarctica). J Volcanol Geotherm Res 128:115–133CrossRefGoogle Scholar
  30. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357CrossRefGoogle Scholar
  31. Kamae K, Bard P-Y, Irikura K (1998) Prediction of strong ground motion at EURO-SEISTEST site using the empirical Green’s function method. J Seismol 2:193–207CrossRefGoogle Scholar
  32. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095Google Scholar
  33. Kiszely M (2000) Attenuation of coda-waves in Hungary. Acta Geod Geophys Hung 35:465–473Google Scholar
  34. Kwiatek G, Plenkers K, Dresen G (2011) Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: implications for scaling relations. Bull Seismol Soc Am 101:2592–2608CrossRefGoogle Scholar
  35. Oye V, Bungum H, Roth M (2005) Source parameters and scaling relations for mining-related seismicity within the Pyhäsalmi Ore Mine, Finland. Bull Seismol Soc Am 95:1011–1026CrossRefGoogle Scholar
  36. Posgay K, Bodoky T, Hegedűs E, Kovácsvölgyi S, Lenkey L, Szafián P, Takács E, Tímár Z, Varga G (1995) Asthenospheric structure beneath a Neogene basin in southeast Hungary. Tectonophysics 252:467–484CrossRefGoogle Scholar
  37. Prieto GA, Shearer PM, Vernon FL, Kilb D (2004) Earthquake source scaling and self-similarity estimation from stacking P and S spectra. J Geophys Res 109:B08310. doi: 10.1029/2004JB003084 CrossRefGoogle Scholar
  38. Radulian M, Popa M (1996) Scaling of source parameters for Vrancea (Romania) intermediate depth eartquakes. Tectonophysics 261:67–81CrossRefGoogle Scholar
  39. Singh SK, Apsel RJ, Fried J, Brune JN (1982) Spectral attenuation of SH waves along the imperial fault. Bull Seismol Soc Am 72:2003–2016Google Scholar
  40. Sokolov V, Bonjer KP, Wenzel F, Grecu B, Radulian M (2008) Ground-motion prediction equations for the intermediate depth Vrancea (Romania) earthquakes. BullEarthquake Eng 6:367–388Google Scholar
  41. Spottiswoode SM, McGarr A (1975) Source parameters of tremors in a deep-level gold mine. Bull Seismol Soc Am 65:93–112Google Scholar
  42. Stork AL, Ito H (2004) Source parameter scaling for small earthquakes observed at the western Nagano 800-m-deep borehole, central Japan. Bull Seismol Soc Am 94:1781–1794CrossRefGoogle Scholar
  43. Süle B (2010) Spectral source parameters for weak local earthquakes in the Pannonian basin. Cent Eur J Geosci 2:475–480CrossRefGoogle Scholar
  44. Trifunac MD (1972) Stress estimates for the San Fernando, California, eartquake of February 9, 1971: main event and thirteeen aftershocks. Bull Seismol SocAm 62:721–750Google Scholar
  45. Tusa G, Gresta S (2008) Frequency-dependent attenuation of P waves and estimation of earthquake source parameters in southeastern Sicily, Italy. Bull Seismol Soc Am 98:2772–2794CrossRefGoogle Scholar
  46. Tusa G, Brancato A, Gresta S, Malone SD (2006) Source parameters of microearthquakes at Mount St Helens (USA). Geophys J Int 166:1193–1223CrossRefGoogle Scholar
  47. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am geophys Un 79:579CrossRefGoogle Scholar
  48. Yamada T, Mori JJ, Ide S, Abercrombie RE, Kawakata H, Nakatani M, Iio Y, Ogasawara H (2007) Stress drops and radiated seismic energies of microearthquakes in a South African gold mine. J Geophys Res 112:B03305. doi: 10.1029/2006JB004553 CrossRefGoogle Scholar
  49. Zobin VM, Havskov J (1995) Source spectral properties of small earthquakes in the northern North Sea. Tectonophysics 248:207–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Kövesligethy Radó Seismological ObservatoryMTA CSFK GGIBudapestHungary

Personalised recommendations