Journal of Seismology

, Volume 16, Issue 4, pp 745–755 | Cite as

Toroidal free oscillations of the Earth observed by a ring laser system: a comparative study

  • M. F. NaderEmail author
  • H. Igel
  • A. M. G. Ferreira
  • D. Kurrle
  • J. Wassermann
  • K. U. Schreiber
Original Article


In this study, we explore the potential of measuring systematically the Earth's free oscillations using ring laser gyro (RLG) vertical axis rotational records. The RLG that we use is the vertical axis G-ring laser system of the Geodetic Observatory Wettzell (Germany). In 2009, its signal-to-noise ratio was considerably improved over the broadband frequency range of seismic measurements. Since then, three large magnitude earthquakes have occurred (Samoa Islands 2009; Maule, Chile, 2010; and Tohoku, Japan, 2011), leading to the first direct observations of rotational ground motions induced by toroidal free oscillations of the Earth. We compare these G-ring laser observations with synthetic seismograms computed by summing normal modes. We also analyse amplitude spectra of real and synthetic data to aid in the interpretation of the observations. We show that several toroidal modes are detected by the G-ring laser for earthquakes with a moment magnitude M W ≥ 8.0 and that our observations are in reasonable agreement with the synthetic spectra. We also report evidence for mode coupling in both translation and rotation spectra.


Free oscillations Rotational seismology Love waves 



A special thank-you goes to those who contributed to this paper: Kostas Lentas for his help in bench-marking the synthetic study on the High Performance Computing Cluster supported by the Research Computing Service at the University of East Anglia. Walter Zürn and an anonymous reviewer for their constructive comments and helpful suggestions. Also we extend our heartfelt gratitude to Dr. John R. Evans for his great support editing the paper. We acknowledge support from the European Commission (Marie Curie Actions, ITN QUEST, and the German Research Foundation (Project Ig16/8).


  1. Beghein C, Trampert J (2003) Robust normal mode constraints on inner core anisotropy from model space search. Science 299:552–555CrossRefGoogle Scholar
  2. Deuss A, Irving JCE, Woodhouse JH (2010) Regional variation of inner core anisotropy from seismic normal mode observations. Science 328:1018–1020CrossRefGoogle Scholar
  3. Dziewonski AM, Anderson D (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  4. Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86:2825–2852CrossRefGoogle Scholar
  5. Ferreira AMG, Igel H (2009) Rotational motions of seismic surface waves in a laterally heterogeneous earth. Bull Seismol Soc Am 99:1429–1436CrossRefGoogle Scholar
  6. Giardini D, Li EX, Woodhouse JH (1987) Three dimensional structure of the earth from splitting in free oscillation spectra. Nature 325:405–411CrossRefGoogle Scholar
  7. Gilbert F, Dziewonski AM (1975) An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Phil Trans R Soc Lond 278:187–269CrossRefGoogle Scholar
  8. Igel H, Cochard A, Wassermann J, Flaws A, Schreiber U, Velikoseltsev A, Pham DN (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168(1):182–196CrossRefGoogle Scholar
  9. Igel H, Nader MF, Kurrle D, Ferreira AM, Wassermann J, Schreiber KU (2011) Observations of Earth's toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake. Geophys Res Lett. doi: 10.1029/2011GL049045
  10. Ishii M, Tromp J (1999) Normal-mode and free-air gravity constraints on lateral variations in velocity, and density of the Earth’s mantle. Science 285:1231–1236CrossRefGoogle Scholar
  11. Kurrle D, Igel H, Ferreira AMG, Wassermann J, Schreiber U (2010) Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophys Res Lett 37(L04):307Google Scholar
  12. Laske G, Masters G (1999) Limits on differential rotation of the inner core from analysis of earths free oscillations. Nature 402:66–69CrossRefGoogle Scholar
  13. Masters, G., Park, J., and Gilbert, F. (1983) Observations of coupled spheroidal and toroidal modes, J. Geophys. Res. 88(B12), 10,285–10,298Google Scholar
  14. Masters G, Barmine M, Kientz S (2007) Mineos: user manual. Calif. Inst. Technol, PasadenaGoogle Scholar
  15. Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber U (2000) Ring laser detection of rotations from teleseismic waves. Geophys Res Lett 27:3553–3556CrossRefGoogle Scholar
  16. Pham ND, Igel H, Wassermann J, Cochard A, Schreiber U (2009) The effects of tilt on interferometric rotation sensors. Bull Seismol Soc Am 99(2B):1352–1365CrossRefGoogle Scholar
  17. Richter B, Wenzel HG, Zürn W, Klopping F (1995) From Chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys Earth Planet Inter 91:131–148CrossRefGoogle Scholar
  18. Schreiber U, Stedman G, Igel H, Flaws A (2006) Ring laser gyroscopes as rotation sensors for seismic wave studies. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Berlin, pp 391–402Google Scholar
  19. Schreiber U, Hautmann JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells JPR (2009) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99(2B):1190–1198CrossRefGoogle Scholar
  20. Widmer-Schnidrig R, Zürn W (2009) Perspectives for ring laser gyroscopes in low-frequency seismology. Bull Seismol Soc Am 99(2B):1199–1206CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. F. Nader
    • 1
    Email author
  • H. Igel
    • 1
  • A. M. G. Ferreira
    • 2
    • 3
  • D. Kurrle
    • 1
    • 4
  • J. Wassermann
    • 1
  • K. U. Schreiber
    • 5
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-University of MunichMunichGermany
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichUK
  3. 3.ICIST, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal
  4. 4.Now at State Earthquake Service Baden-WürttembergFreiburgGermany
  5. 5.Forschungseinrichtung SatellitengeodäsieTechnical University of MunichKötztingGermany

Personalised recommendations