Journal of Seismology

, Volume 16, Issue 4, pp 709–720 | Cite as

Investigation of ground rotational motions caused by direct and scattered P-waves from the 4 March 2008 TAIGER explosion experiment

  • Nguyen Dinh Pham
  • Bor-Shouh Huang
  • Chin-Jen Lin
  • Tuan-Minh Vu
  • Ngoc-Anh Tran
Original Article

Abstract

High-frequency rotational motions of P-waves and coda waves were analysed using rotation rate sensors and strong motion array data from the 4 March 2008 TAiwan Integrated GEodynamics Research (TAIGER) explosion experiment in northeastern Taiwan. Theoretical and observational investigations focussed on the effects of this experiment on the free surface. The main goal of this study was to explore possible applications of combined measurements of artificial explosion-derived translational and rotational motions. Also investigated was the consistent ground rotation observed directly by rotation rate sensors and derived using translational seismic arrays. Common near-source high-frequency rotational motion observations and array-recorded translational motions from one shallow borehole explosion are analysed in this study. Using a half-space assumption of plane P-wave propagation across the recording site, we conclude that: (1) rotational motions induced by direct P-waves interacting with a free surface in theory can be used to estimate wave radial direction, velocity and anisotropic properties; (2) rotational motions derived from scattering are predominant among the observed rotations during the TAIGER explosion experiments and allow us to image the heterogeneous structure of the medium at the investigated site; and (3) rotation sensor measurements undertaken during TAIGER explosion experiments may be affected by cross-axis sensitivities, which need to be considered when using the data obtained during these experiments.

Keywords

Rotational motion P wave Wave radial direction Wave velocity Anisotropy Scattering 

Notes

Acknowledgments

We thank Heiner Igel and other members of the Seismology Group at Ludwig Maximilians University Munich for providing synthetic seismograms. We are grateful to William H.K. Lee and the International Working Group on Rotational Seismology for providing observation data from the TAIGER explosions. Nguyen Dinh Pham, Ngoc-Anh Tran and Tuan-Minh Vu would like to thank the Vietnam National Foundation for Science and Technology Development (NAFOSTED) for financial support through Project 105.04-2010.07. Anonymous reviewers provided helpful comments and suggestions that improved the manuscript.

References

  1. Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W.H. Freeman, San FranciscoGoogle Scholar
  2. Båth M (1979) Introduction to seismology. Birkhauser Verlag, BaselGoogle Scholar
  3. Bernauer M, Fichtner A, Igel H (2009) Inferring near-receiver structure from combined measurements of rotational and translational ground motions. Geophysics 74(6):WCD41–WCD47CrossRefGoogle Scholar
  4. Cochard A, Igel H, Schuberth B, Suryanto W, Velikoseltsev A, Schreiber U, Wassermann J, Scherbaum F, Vollmer D (2006) Rotational motions in seismology: theory, observations, simulation. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, New York, pp 391–412CrossRefGoogle Scholar
  5. eentec (2008) Instruction manual, special case, model R-1 (serial number A200504 thru A200547, St. Louis, Missouri, 8 pp. http://www.eentec.com/. Accessed January 2009
  6. Fichtner A, Igel H (2009) Sensitivity densities for rotational ground motion measurements. Bull Seismol Soc Am 99(2B):1302–1314CrossRefGoogle Scholar
  7. Graizer V (2005) Effect of tilt on strong motion data processing. Soil Dyn Earthq Eng 25:197–204CrossRefGoogle Scholar
  8. Graizer V (2006) Tilts in strong ground motion. Bull Seismol Soc Am 96:2090–2102CrossRefGoogle Scholar
  9. Gutenberg B (1927) Grundlagen der erdbebenkunde. Univ. Frankfurt a/MGoogle Scholar
  10. Huang BS (2003) Ground rotational motions of the 1991 Chi-Chi, Taiwan earthquake as inferred from dense array observations. Geophys Res Lett 30(6):1307–1310CrossRefGoogle Scholar
  11. Igel H, Schreiber U, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2005) Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003. Geophys Res Lett 32:L08309CrossRefGoogle Scholar
  12. Igel H, Cochard A, Wassermann J, Flaws A, Schreiber U, Velikoseltsev A, Pham ND (2007) Broadband observations of earthquake induced rotational ground motions. Geophys J Int 168:182–196CrossRefGoogle Scholar
  13. Langston CA (2007a) Spatial gradient analysis for linear seismic arrays. Bull Seismol Soc Am 97(1B):265–280CrossRefGoogle Scholar
  14. Langston CA (2007b) Wave gradiometry in two dimensions. Bull Seismol Soc Am 97:401–416. doi: 10.1785/0120060138 CrossRefGoogle Scholar
  15. Langston CA, Liang C (2008) Gradiometry for polarized seismic waves. J Geophys Res 113:B08305CrossRefGoogle Scholar
  16. Langston CA, Lee WHK, Lin CJ, Liu CC (2009) Seismic-wave strain, rotation, and gradiometry for the 4 March 2008 TAIGER explosions. Bull Seismol Soc Am 99(2B):1287–1301CrossRefGoogle Scholar
  17. Lay T, Wallace TC (1995) Modern global seismology. Academic, San DiegoGoogle Scholar
  18. Lee WHK, Celebi M, Todorovska MI, Igel H (2009a) Introduction to the special issue on rotational seismology and engineering applications. Bull Seismol Soc Am 99(2B):945–957CrossRefGoogle Scholar
  19. Lee HKW, Igel H, Trifunac MD (2009b) Recent advances in rotational seismology. Seismol Res Lett 80(3):479–490CrossRefGoogle Scholar
  20. Li H, Sun L, Wang S (2001) Improved approach for obtaining rotational components of seismic motion. Trans, SmiRT 16:1–8Google Scholar
  21. Liang C, Langston CA (2009) Wave gradiometry for USArray: Rayleigh waves. J Geophys Res 114:B02308. doi: 10.1029/2008JB005918 CrossRefGoogle Scholar
  22. Lin CJ, Liu CC, Lee WHK (2009) Recording rotational and translational ground motions of two TAIGER explosions in northeastern Taiwan on 4 March 2008. Bull Seismol Soc Am 99(2B):1237–1250CrossRefGoogle Scholar
  23. Lin CJ, Huang HP, Pham ND, Liu CC, Chi WC, Lee WHK (2011) Rotational motions for teleseismic surface waves. Geophys Res Lett 38:L15301CrossRefGoogle Scholar
  24. Lin CJ, Huang WG, Huang HP, Huang BS, Ku CS, Liu CC (2012) Investigation of array derived rotation. J Seismol (this volume)Google Scholar
  25. McLeod DP, Stedman GE, Webb TH, Schreiber U (1998) Comparison of standard and ring laser rotational seismograms. Bull Seismol Soc Am 88:1495–1503Google Scholar
  26. Metrozet LLC (2007) Triaxial seismic accelerometer TSA-100S: user’s manual, Torrance, California. http://www.metrozet.com/. Accessed January 2009
  27. Nigbor RL, Evans JR, Hutt CR (2009) Laboratory and field testing of commercial rotational seismometers. Bull Seismol Soc Am 99(2B):1215–1227CrossRefGoogle Scholar
  28. Okaya D, Wu FT, Wang CY, Yen HY, Huang BS, Brown L, Liang WT (2009) Joint passive/controlled source seismic experiment across Taiwan. Eos 90:289–290CrossRefGoogle Scholar
  29. Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber U (2000) Ring laser detection of rotations from teleseismic waves. Geophys Res Lett 27:3553–3556CrossRefGoogle Scholar
  30. Pham DN, Igel H, Wassermann J, Käser M, de la Puente J, Schreiber U (2009a) Observations and modelling of rotational signals in the P-coda: constraints on crustal scattering. Bull Seismol Soc Am 99(2B):1315–1332CrossRefGoogle Scholar
  31. Pham DN, Igel H, Wassermann J, Cochard A, Schreiber U (2009b) The effects of tilt on interferometric rotation sensors. Bull Seismol Soc Am 99(2B):1352–1365CrossRefGoogle Scholar
  32. Pham DN, Igel H, de la Puente J, Käser M, Schoenberg MA (2010) Rotational motions in homogeneous anisotropic elastic media. Geophysics 75:D47–D56CrossRefGoogle Scholar
  33. Pillet R, Virieux J (2007) The effects of seismic rotations on inertial sensors. Geophys J Int 171:1314–1323CrossRefGoogle Scholar
  34. Richter CF (1958) Elementary seismology. W.H. Freeman, San FranciscoGoogle Scholar
  35. Schreiber U, Igel H, Cochard A, Velikoseltsev A, Flaws A, Schuberth B, Drewitz W, Müller F (2005) The GEOsensor Project: a new observable for seismology. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the System Earth from space. Springer, Berlin, pp 427–443Google Scholar
  36. Schreiber U, Stedman GE, Igel H, Flaws A (2006) Ring laser gyroscopes as rotation sensors for seismic wave studies. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, New York, pp 377–390CrossRefGoogle Scholar
  37. Spudich P, Fletcher JB (2008) Observation and prediction of dynamic ground strains, tilts, and torsions caused by the Mw 6.0 2004 Parkfield, California, earthquake and aftershocks, derived from UPSAR array observations. Bull Seismol Soc Am 98(4):1898–1914CrossRefGoogle Scholar
  38. Suryanto W, Igel H, Wassermann J, Cochard A, Schuberth B, Vollmer D, Scherbaum F, Schreiber U, Velikoseltsev A (2006) First comparison of array-derived rotational ground motions with direct ring laser measurements. Bull Seismol Soc Am 96(2):2059–2071. doi: 10.1785/0120060004 CrossRefGoogle Scholar
  39. Trifunac MD, Todorovska IM (2001) A note on the usable dynamic range of accelerographs recording translation. Soil Dyn Earthq Eng 21(4):275–286CrossRefGoogle Scholar
  40. Wu FT, Liang WT, Lee JC, Benz H, Villasenor A (2009) A model for the termination of the Ryukyu subduction zone against Taiwan: a junction of collision, subduction/separation, and subduction boundaries. J Geophys Res 114:B07407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nguyen Dinh Pham
    • 1
  • Bor-Shouh Huang
    • 2
  • Chin-Jen Lin
    • 2
  • Tuan-Minh Vu
    • 1
  • Ngoc-Anh Tran
    • 1
  1. 1.Institute of GeophysicsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Institute of Earth SciencesAcademia SinicaTaipei 115Republic of China

Personalised recommendations