Advertisement

Journal of Seismology

, Volume 16, Issue 4, pp 669–681 | Cite as

Measurements of translation, rotation and strain: new approaches to seismic processing and inversion

  • Moritz BernauerEmail author
  • Andreas Fichtner
  • Heiner Igel
Original Article

Abstract

We propose a novel approach to seismic tomography based on the joint processing of translation, strain and rotation measurements. Our concept is based on the apparent S and P velocities, defined as the ratios of displacement velocity and rotation amplitude, and displacement velocity and divergence amplitude, respectively. To assess the capability of these new observables to constrain various aspects of 3D Earth structure, we study their corresponding finite-frequency kernels, computed with a combination of spectral-element simulations and adjoint techniques. The principal conclusion is that both the apparent S and P velocities are generally sensitive only to small-scale near-receiver structure, irrespective of the type of seismic wave considered. It follows that knowledge of deeper Earth structure would not be required in tomographic inversions for local structure based on the new observables. In a synthetic finite-perturbation test, we confirm the ability of the apparent S and P velocities to directly detect both the location and the sign of shallow lateral velocity variations.

Keywords

Earth structure Earthquakes Geophysical techniques Seismic waves Seismology 

Notes

Acknowledgements

We thank the members of the Munich Seismology group (LMU University, Munich) for the many critical and fruitful discussions. The research presented in this article was supported by the International Graduate School THESIS within the Bavarian Elite Network. Andreas Fichtner was funded by The Netherlands Research Center for Integrated Solid Earth Sciences under project number ISES-MD.5. The numerical computations were performed on the National Supercomputer HLRB-II maintained by the Leibniz-Rechenzentrum. The constructive criticism of two anonymous reviewers allowed us to improve the first version of our manuscript.

References

  1. Agnew DC and Wyatt FK (2003) Long-base laser strainmeters: a review. Scripps Institution of Oceanography. http://escholarship.org/uc/item/21z72167. Accessed 17 May 2011
  2. Bernauer M, Fichtner A, Igel H (2009) Inferring earth structure from combined measurements of rotational and translational ground motions. Geophysics 74:WCD41–WCD47. doi: 10.1190/1.3211110 CrossRefGoogle Scholar
  3. Blum J, Igel H, Zumberge M (2010) Observations of Rayleigh-wave phase velocity and coseismic deformation using an optical fiber, interferometric vertical strainmeter at the SAFOD borehole, California. Bull Seismol Soc Am 100:1879–1891. doi: 10.1785/0120090333 CrossRefGoogle Scholar
  4. Brokešová J, Málek J (2010) New portable sensor system for rotational seismic motion measurements. Rev Sci Instrum 81:084501. doi: 10.1063/1.3463271 CrossRefGoogle Scholar
  5. Cochard A, Igel H, Schuberth B, Suryanto W, Velikoseltsev A, Schreiber U, Wassermann J, Scherbaum F, Vollmer D (2006) Rotational motions in seismology: theory, observation, simulation. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, Heidelberg, pp 391–411CrossRefGoogle Scholar
  6. Dahlen FA, Baig AM (2002) Fréchet kernels for body-wave amplitudes. Geophys J Int 150:440–466. doi: 10.1046/j.1365-246X.2002.01718.x CrossRefGoogle Scholar
  7. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Int 25:297–356. doi: 10.1016/0031-9201(81)90046-7 CrossRefGoogle Scholar
  8. Ferreira AMG, Igel H (2009) Rotational motions of seismic surface waves in a laterally heterogeneous Earth. Bull Seismol Soc Am 99:1429–1436. doi: 10.1785/0120080149 CrossRefGoogle Scholar
  9. Fichtner A (2011) Full seismic waveform modelling and inversion. Springer, HeidelbergCrossRefGoogle Scholar
  10. Fichtner A, Igel H (2009) Sensitivity densities for rotational ground-motion measurements. Bull Seismol Soc Am 99:1302–1314. doi: 10.1785/0120080064 CrossRefGoogle Scholar
  11. Fichtner A, Trampert J (2011) Resolution analysis in full waveform inversion. Geophys J Int 187:1604–1624CrossRefGoogle Scholar
  12. Fichtner A, Bunge H-P, Igel H (2006) The adjoint method in seismology: I-theory. Phys Earth Planet Int 157:86–104. doi: 10.1016/j.pepi.2006.03.016 CrossRefGoogle Scholar
  13. Fichtner A, Igel H, Bunge H-P, Kennett BLN (2009) Simulation and inversion of seismic wave propagation on continental scales based on a spectral-element method. J Numer Anal, Ind and Appl Math 4:11–22Google Scholar
  14. Gomberg J, Agnew D (1996) The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Piñon flat observatory, California. Bull Seismol Soc Am 86:212–220Google Scholar
  15. Igel H, Schreiber U, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2005) Rotational motions induced by the M 8.1 Tokachi-oki earthquake, September 25, 2003. Geophys Res Lett. doi: 10.1029/2004GL022336 Google Scholar
  16. Igel H, Cochard A, Wassermann J, Flaws A, Schreiber U, Velikoseltsev A, Dinh NP (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168:182–197. doi: 10.1111/j.1365-246X.2006.03146.x CrossRefGoogle Scholar
  17. Liu C-C, Huang B-S, Lee WHK, Lin C-J (2009) Observing rotational and translational ground motions at the HGSD station in Taiwan from 2007 to 2008. Bull Seismol Soc Am 99:1228–1236. doi: 10.1785/0120080156 CrossRefGoogle Scholar
  18. Mikumo T, Aki K (1964) Determination of local phase velocity by intercomparison of seismograms from strain and pendulum instruments. J Geophys Res 69:721–731CrossRefGoogle Scholar
  19. Nigbor RL, Evans JR, Hutt CR (2009) Laboratory and field testing of commercial rotational seismometers. Bull Seismol Soc Am 99:1215–1227. doi: 10.1785/10.1785/0120080247 CrossRefGoogle Scholar
  20. Pham ND, Igel H, Wassermann J, Käser M, de la Puente J, Schreiber U (2009) Observations and modeling of rotational signals in the P coda: constraints on crustal scattering. Bull Seismol Soc Am 99:1315–1332. doi: 10.1785/0120080101 CrossRefGoogle Scholar
  21. Pillet R, Deschamps A, Legrand D, Virieux J, Béthoux N, Yates B (2009) Interpretation of broadband ocean-bottom seismometer horizontal data seismic background noise. Bull Seismol Soc Am 99:1333–1342. doi: 10.1785/0120080123 CrossRefGoogle Scholar
  22. Sacks IS, Snoke JA, Evans R, King G, Beavan J (1976) Single-site phase velocity measurement. Geophys J R Astron Soc 46:253–258. doi: 10.1111/j.1365-246X.1976.tb04157.x CrossRefGoogle Scholar
  23. Schreiber U, Hautmann JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells J-PR (2009) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99:1190–1198. doi: 10.1785/0120080171 CrossRefGoogle Scholar
  24. Stupazzini M, de la Puente J, Smerzini C, Käser M, Igel H, Castellani A (2009) Study of rotational ground motion in the near-field region. Bull Seismol Soc Am 99:1271–1286. doi: 10.1785/0120080153 CrossRefGoogle Scholar
  25. Suryanto W, Igel H, Wassermann J, Cochard A, Schuberth B, Vollmer D, Scherbaum F, Schreiber U, Velikoseltsev A (2006) First comparison of array-derived rotational ground motions with direct ring laser measurements. Bull Seismol Soc Am 96:2059–2071. doi: 10.1785/10.1785/0120060004 CrossRefGoogle Scholar
  26. Takeo M (2009) Rotational motions observed during an earthquake swarm in April 1998 offshore Ito, Japan. Bull Seismol Soc Am 99:1457–1467. doi: 10.1785/0120080173 CrossRefGoogle Scholar
  27. Tarantola A (1988) Theoretical background for the inversion of seismic waveforms, including anelasticity and attenuation. Pure Appl Geophys 128:365–399. doi: 10.1007/BF01772605 CrossRefGoogle Scholar
  28. Tromp J, Tape C, Liu Q (2005) Seismic tomography, adjoint methods, time reversal, and banana-donut kernels. Geophys J Int 160:195–216. doi: 10.1111/j.1365-246X.2006.03146.x CrossRefGoogle Scholar
  29. Wang H, Igel H, Gallovic F, Cochard A (2009) Source and basin effects on rotational ground motions: comparison with translations. Bull Seismol Soc Am 99:1162–1173. doi: 10.1785/0120080115 CrossRefGoogle Scholar
  30. Wassermann J, Lehndorfer S, Igel H, Schreiber U (2009) Performance test of a commercial rotational motions sensor. Bull Seismol Soc Am 99:1449–1456. doi: 10.1785/0120080157 CrossRefGoogle Scholar
  31. Wu C-F, Lee WHK, Huang HC (2009) Array deployment to observe rotational and translational ground motions along the Meishan fault, Taiwan: a progress report. Bull Seismol Soc Am 99:1468–1474. doi: 10.1785/0120080185 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Moritz Bernauer
    • 1
    Email author
  • Andreas Fichtner
    • 2
  • Heiner Igel
    • 1
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations