Advertisement

Journal of Seismology

, Volume 16, Issue 4, pp 657–668 | Cite as

Strain rotation coupling and its implications on the measurement of rotational ground motions

  • Martin van Driel
  • Joachim Wassermann
  • Maria Fernanda Nader
  • Bernhard S. A. Schuberth
  • Heiner Igel
Original Article

Abstract

Spatial derivatives of the seismic wave field are known to be sensitive to various site effects (e.g., cavity effects, topography, and geological inhomogeneities). In this study, the focus is on strain rotation coupling that can cause significant differences between point measurements compared to array-derived rotational motions. The strain rotation coupling constants are estimated based on finite element simulations for inhomogeneous media as well as for the 3D topography around Wettzell, Germany (the location of the G ring laser). Using collocated array and ring laser data, the coupling constants of the ring laser itself are shown to be small. Several examples are shown to illustrate the order of magnitude that strain-induced rotation might have on the seismograms in the near field of volcanoes as well as in the far field and in the low-frequency spectrum (free oscillations).

Keywords

Rotational seismology Strain rotation coupling  Strain-induced rotation Site effects 

Notes

Acknowledgements

This study was supported by the QUEST Initial Training Network (Marie Curie Actions, www.quest-itn.org) and DFG project Ig16-8. BSAS was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (FP7/2007-2013) under grant agreement nr. 235861. We thank the Leibniz Supercomputing Centre for access to computing resources. The manuscript benefited from the constructive comments of two anonymous reviewers.

References

  1. Berger J, Beaumont C (1976) An analysis of tidal strain observations from the united states of america II. The inhomogeneous tide. Bull Seismol Soc Amer 66(6):1821Google Scholar
  2. Bernauer F, Wassermann J, Igel H (2012) Rotational sensors—a comparison of different sensor types. J Seismol. doi: 10.1007/s10950-012-9286-7 Google Scholar
  3. Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) ObsPy: a python toolbox for seismology. Seismol Res Lett 81(3):530–533. doi: 10.1785/gssrl.81.3.530 CrossRefGoogle Scholar
  4. Cochard A, Igel H, Schuberth B, Suryanto W, Velikoseltsev A, Schreiber U, Wassermann J, Scherbaum F, Vollmer D (2006) Rotational motions in seismology: theory, observation, simulation. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, New York, pp 391–411CrossRefGoogle Scholar
  5. Dunn RW, Mahdi HH, Al-Shukri HJ (2009) Design of a relatively inexpensive ring laser seismic detector. Bull Seismol Soc Amer 99(2B):1437–1442. doi: 10.1785/0120080092 CrossRefGoogle Scholar
  6. Evans JR, Hutt CR, Nigbor RN, de la Torre T (2010) Performance of the new R2 Sensor—presentation at the 2nd IWGoRS meeting in PragueGoogle Scholar
  7. Gerstenecker C, Läufer G, Snitil B, Wrobel B (1999) Digital elevation models for Merapi. DGG Special IssueGoogle Scholar
  8. Gomberg J, Agnew D (1996) The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Pifion Flat Observatory, California. Bull Seismol Soc Amer 86(1):212–220Google Scholar
  9. Graizer V (2009) Tutorial on measuring rotations using multipendulum systems. Bull Seismol Soc Amer 99(2B):1064–1072. doi: 10.1785/0120080145 CrossRefGoogle Scholar
  10. Graizer V (2010) Strong motion recordings and residual displacements: what are we actually recording in strong motion seismology? Seismol Res Lett 81(4):635–639. do 10.1785/gssrl.81.4.635 CrossRefGoogle Scholar
  11. Gross L, Bourgouin L, Hale A, Muhlhaus H (2007a) Interface modeling in incompressible media using level sets in Escript. Phys Earth Planet In 163(1-4):23–34. doi: 10.1016/j.pepi.2007.04.004 CrossRefGoogle Scholar
  12. Gross L, Cumming B, Steube K, Weatherley D (2007b) A Python module for PDE-based numerical modelling example: seismic wave propagation. In: Applied parallel computing. State of the Art in Scientific Computing, Springer, New York, pp 270–279. doi: 10.1007/978-3-540-75755-9_33 CrossRefGoogle Scholar
  13. Harrison JC (1976) Cavity and topographic effects in tilt and strain measurement. J Geophys Res 81(2):319–328CrossRefGoogle Scholar
  14. Igel H, Cochard A, Wassermann J, Flaws A, Schreiber U, Velikoseltsev A, Pham ND (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168(1):182–196. doi: 10.1111/j.1365-246X.2006.03146.x CrossRefGoogle Scholar
  15. Kohl ML, Levine J (1995) Measurement and interpretation of tidal tilts in a small array. J Geophys Res 100(B3):3929–3941. doi: 10.1007/s11605-011-1421-1 CrossRefGoogle Scholar
  16. Komatitsch D, Tromp J (2002a) Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys J Int 149(2):390–412. doi: 10.1046/j.1365-246X.2002.01653.x CrossRefGoogle Scholar
  17. Komatitsch D, Tromp J (2002b) Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys J Int 150(1):303–318. doi: 10.1046/j.1365-246X.2002.01716.x CrossRefGoogle Scholar
  18. Kurrle D, Igel H, Ferreira AMG, Wassermann J, Schreiber U (2010) Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophys Res Lett 37(4):1–5. doi: 10.1029/2009GL042215 CrossRefGoogle Scholar
  19. Lambotte S, Rivera L, Hinderer J (2006) Vertical and horizontal seismometric observations of tides. J Geodyn 41(1–3):39–58. doi: 10.1016/j.jog.2005.08.021 CrossRefGoogle Scholar
  20. Langston CA (2007a) Spatial gradient analysis for linear seismic arrays. Bull Seismol Soc Amer 97(1B):265–280. doi: 10.1785/0120060100 CrossRefGoogle Scholar
  21. Langston CA (2007b) Wave gradiometry in the time domain. Bull Seismol Soc Amer 97(3):926–933. doi: 10.1785/0120060152 CrossRefGoogle Scholar
  22. Langston CA (2007c) Wave gradiometry in two dimensions. Bull Seismol Soc Amer 97(2):401–416. doi: 10.1785/0120060138 CrossRefGoogle Scholar
  23. Lin CJ, Huang HP, Liu CC, Chiu HC (2010) Application of rotational sensors to correcting rotation-induced effects on accelerometers. Bull Seismol Soc Amer 100(2):585–597. doi: 10.1785/0120090123 CrossRefGoogle Scholar
  24. Maeda Y, Takeo M, Ohminato T (2011) A waveform inversion including tilt: method and simple tests. Geophys J Int 184(2):907–918. doi: 10.1111/j.1365-246X.2010.04892.x CrossRefGoogle Scholar
  25. Masters G, Barmine M, Kientz S (2007) Mineos: user manual. Calif Inst Techbol, PasadenaGoogle Scholar
  26. Megies T, Beyreuther M, Barsch R, Krischer L, Wassermann J (2011) ObsPy—what can it do for data centers and observatories? Ann Geophys 54(1). doi: 10.4401/ag-4838
  27. Mogi K (1958) Relations between the eruptions of various volcanoes and the deformations of the ground surface around them. Bull Earth Res Inst 36:99–134Google Scholar
  28. Nader MF, Igel H, Ferreira AMG, Kurrle D, Wassermann J, Schreiber KU (2012) Toroidal free oscillations of the Earth observed by a ring laser system: a comparative study. J Seismol, this issueGoogle Scholar
  29. Nigbor RL (1994) Six-degree-of-freedom ground-motion measurement. Bull Seismol Soc Amer 84(5):1665–1669Google Scholar
  30. Nigbor RL, Evans JR, Hutt CR (2009) Laboratory and field testing of commercial rotational seismometers. Bull Seismol Soc Amer 99(2B):1215–1227. doi: 10.1785/0120080247 CrossRefGoogle Scholar
  31. Nolet G (2008) A breviary of seismic tomography: imaging the interior of the earth and sun. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. Peter D, Komatitsch D, Luo Y, Martin R, Le Goff N, Casarotti E, Le Loher P, Magnoni F, Liu Q, Blitz C, Nissen-Meyer T, Basini P, Tromp J (2011) Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys J Int 186(2):721–739. doi: 10.1111/j.1365-246X.2011.05044.x CrossRefGoogle Scholar
  33. Pham ND, Igel H, Wassermann J, Käser M, de la Puente J, Schreiber U (2009) Observations and modeling of rotational signals in the P coda: constraints on crustal scattering. Bull Seismol Soc Amer 99(2B):1315–1332. doi: 10.1785/0120080101 CrossRefGoogle Scholar
  34. Schreiber U, Hautmann JN, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells JPR (2009) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Amer 99(2B):1190–1198. doi: 10.1785/0120080171 CrossRefGoogle Scholar
  35. Schreiber U, Velikoseltsev A, Igel H, Cochard A, Flaws A, Drewitz W, Müller F (2003) The GEOsensor: a new instrument for seismology. GEO-TECHNOLOGIEN Science Report 3, pp 12–13Google Scholar
  36. Schreiber U, Stedman GE, Igel H, Flaws A (2006) Ring laser gyroscopes as rotation sensors for seismic wave studies. In: Teisseyre R, Takeo M, Majewski E (eds) Earthquake source asymmetry, structural media and rotation effects. Springer, New YorkGoogle Scholar
  37. Spudich P, Fletcher JB (2008) Observation and prediction of dynamic ground strains, tilts, and torsions caused by the Mw 6.0 2004 Parkfield, California, earthquake and aftershocks, derived from UPSAR Array observations. Bull Seismol Soc Amer 98(4):1898–1914. doi: 10.1785/0120070157 CrossRefGoogle Scholar
  38. Spudich P, Fletcher JB (2009) Software for inference of dynamic ground strains and rotations and their errors from short baseline array observations of ground motions. Bull Seismol Soc Amer 99(2B):1480–1482. doi: 10.1785/0120080230 CrossRefGoogle Scholar
  39. Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1995) Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J Geophys Res 100:675–675CrossRefGoogle Scholar
  40. Suryanto W, Igel H, Wassermann J, Cochard A, Schuberth B, Vollmer D, Scherbaum F, Schreiber U, Velikoseltsev A (2006) First comparison of array-derived rotational ground motions with direct ring laser measurements. Bull Seismol Soc Amer 96(6):2059–2071. doi: 10.1785/0120060004 CrossRefGoogle Scholar
  41. Wassermann J, Ohrnberger M (2001) Automatic hypocenter determination of volcano induced seismic transients based on wavefield coherence—an application to the 1998 eruption of Mt. Merapi, Indonesia. J Volcanol Geoth Res 110(1–2):57–77. doi: 10.1016/S0377-0273(01)00200-1 CrossRefGoogle Scholar
  42. Wassermann J, Lehndorfer S, Igel H, Schreiber U (2009) Performance test of a commercial rotational motions sensor. Bull Seismol Soc Amer 99(2B):1449–1456. doi: 10.1785/0120080157 CrossRefGoogle Scholar
  43. Wielandt E, Forbriger T (1999) Near-field seismic displacement and tilt associated with the explosive activity of Stromboli. Ann Geofisc 42(3):407–416Google Scholar
  44. Yoon M (2005) Deep seismic imaging in the presence of a heterogeneous overburden—numerical modelling and case studies from the Central Andes and Southern Andes. Ph.D., Freie Universität Berlin. doi: 10.1016/0926-9851(93)90007-L

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Martin van Driel
    • 1
    • 3
  • Joachim Wassermann
    • 1
  • Maria Fernanda Nader
    • 1
  • Bernhard S. A. Schuberth
    • 2
  • Heiner Igel
    • 1
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversityMunichGermany
  2. 2.Université de Nice Sophia-Antipolis, Centre National de la Recherche Scientifique (UMR 6526), Observatoire de la Côte d’Azur, GéoazurValbonneFrance
  3. 3.Institute of GeophysicsETH ZurichZurichSwitzerland

Personalised recommendations