Journal of Seismology

, Volume 16, Issue 4, pp 639–647 | Cite as

Designs and test results for three new rotational sensors

  • P. Jedlička
  • J. T. Kozák
  • J. R. Evans
  • C. R. Hutt
Original Article

Abstract

We discuss the designs and testing of three rotational seismometer prototypes developed at the Institute of Geophysics, Academy of Sciences (Prague, Czech Republic). Two of these designs consist of a liquid-filled toroidal tube with the liquid as the proof mass and providing damping; we tested the piezoelectric and pressure transduction versions of this torus. The third design is a wheel-shaped solid metal inertial sensor with capacitive sensing and magnetic damping. Our results from testing in Prague and at the Albuquerque Seismological Laboratory of the US Geological Survey of transfer function and cross-axis sensitivities are good enough to justify the refinement and subsequent testing of advanced prototypes. These refinements and new testing are well along.

Keywords

Rotational seismology Seismometry Instruments Instrument testing Instrument design 

Notes

Acknowledgements

This work was carried out by cooperation between Czech and American seismologists under the framework of common Project No. ME10008 “Rotational seismometers—design, construction, calibration and field testing” of the AMVIS cooperative program (Czech acronym for the “American Science Information Centre” established between the respective governments for joint Czech–USA research programs).

References

  1. Čechák J (2008) Seismic sensor using piezofilm. Adv Military Seismol 3(2):55–65Google Scholar
  2. Brokešová J, Málek J (2010) New portable sensor sytem for rotational seismic motion measurements. Rev Sci Instrum 81:084501. doi: 10.1063/1.3463271 CrossRefGoogle Scholar
  3. Brokešová J, Málek J, Kolínský P (2012) Rotaphone—a mechanical seismic sensor system for field rotation rate measurements and its in situ calibration. J Seismol. doi: 10.1007/s10950-012-9274-y
  4. Knejzlík J, Kaláb Z, Rambouský Z (2010) Adaptation of pendulous seismometer S­5­S for measurement of rotation component of seismic vibrations. Proceedings of the Second International Workshop on Rotational Seismology. (http://iwgors.pavucina.org/program.php; http://geo.mff.cuni.cz/users/vackar/IWGoRS/Knejzlik.pdf)
  5. Jedlička P, Buben J, Kozák J (2009) Strong-motion fluid rotation seismograph. In: Rotational seismology and engineering applications. Bull Seismol Soc Am 99:1443–1448Google Scholar
  6. Lee WHK, Çelebi M, Todorovska MI, Igel H (eds) (2009a) Introduction to the special issue on rotational seismology and engineering applications. Bull Seismol Soc Am 99(2B):945–957Google Scholar
  7. Lee WHK, Huang B-S, Langston CA, Lin C-J, Liu C-C, Shin T-C, Teng T-L, Wu C-F (2009b) Review: Progress in rotational ground-motion observations from explosions and local earthquakes in Taiwan. Bull Seis Soc Am 99(2B):958–967. doi: 10.1785/0120080205 Google Scholar
  8. Lin CJ, Huang HP, Liu CC, Chiu HC (2010) Application of rotational sensors to correcting rotation-induced effects on accelerometers. Bull Seismol Soc Am 100(2):585–597. doi: 10.1785/0120090123 CrossRefGoogle Scholar
  9. Štrunc J (2010) Rotational seismometer on the capacitive principle. Ph.D. thesis, Czech Technical University in Prague, PragueGoogle Scholar
  10. Teisseyre R, Takeo M, Majewski E (eds) (2006) Earthquake source asymmetry, structural media and rotation effects. Springer, Berlin, pp 3–582Google Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2012

Authors and Affiliations

  • P. Jedlička
    • 1
  • J. T. Kozák
    • 1
  • J. R. Evans
    • 2
  • C. R. Hutt
    • 3
  1. 1.Institute of GeophysicsPragueCzech Republic
  2. 2.USGSMenlo ParkUSA
  3. 3.USGS ASLAlbuquerqueUSA

Personalised recommendations