Advertisement

Journal of Seismology

, Volume 16, Issue 4, pp 787–796 | Cite as

Examining ambient noise using colocated measurements of rotational and translational motion

  • Celine HadziioannouEmail author
  • Peter Gaebler
  • Ulrich Schreiber
  • Joachim Wassermann
  • Heiner Igel
Original Article

Abstract

In the past decade, a number of studies have reported the observation of rotational motion associated with seismic events. We report a first observation of rotational motion in the microseismic ambient noise band. A striking feature of rotational motion measurements is that the information about the seismic phase velocity and source back azimuth is contained in the amplitude ratio of a point measurement of rotation rate and transverse acceleration. We investigate the possibility of applying this method to ambient noise measured with a ring laser and a broadband seismometer at the Wettzell Geodetic Observatory in Germany. Using data in the secondary microseismic band, we recover local phase velocities as well as the back azimuth of the strongest noise source for two different time periods. In order to confirm these findings, we additionally compare the results with classical array processing techniques of the Gräfenberg array located nearby.

Keywords

Rotational ground motion Ring laser Ambient noise 

Notes

Acknowledgements

We gratefully acknowledge the support from the European Commission (Marie Curie Actions, ITN QUEST, www.quest-itn.org) and the German Research Foundation (project Ig16-8).

References

  1. Aki K, Richards P (2002) Quantitative seismology. Second edition, University Science Books, Sausalito, CaliforniaGoogle Scholar
  2. Alsop L, Sutton G, Ewing M (1961) Free oscillations of the Earth observed on strain and pendulum seismographs. J Geophys Res 66(2):631–641CrossRefGoogle Scholar
  3. Berger J, Davis P, Ekström G (2004) Ambient Earth noise: a survey of the global seismographic network. Geophys Res Lett 109:B11,307Google Scholar
  4. Beyreuther M, Barsch R, Krischer L, Megies T, Behr Y, Wassermann J (2010) Obspy: a Python toolbox for seismology. Seismol Res Lett 81(3):530–533CrossRefGoogle Scholar
  5. Cessaro R (1994) Sources of primary and secondary microseisms. Bull Seismol Soc Am 84(1):142Google Scholar
  6. Darbyshire J (1991) A further investigation of microseisms recorded in North Wales. Phys Earth Planet Inter 67(3–4):330–347CrossRefGoogle Scholar
  7. Ferreira A, Igel H (2009) Rotational motions of seismic surface waves in a laterally heterogeneous Earth. Bull Seismol Soc Am 99(2B):1429CrossRefGoogle Scholar
  8. Friedrich A, Krüger F, Klinge K (1998) Ocean-generated microseismic noise located with the Gräfenberg array. J Seismol 2(1):47–64CrossRefGoogle Scholar
  9. Gomberg J, Agnew D (1996) The accuracy of seismic estimates of dynamic strains: an evaluation using strainmeter and seismometer data from Pinon Flat Observatory, California. Bull Seismol Soc Am 86(1A):212Google Scholar
  10. Gutenberg B (1947) Microseisms and weather forcecasting. Journal of Meteorology 4(1):21–28CrossRefGoogle Scholar
  11. Igel H, Schreiber U, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2005) Rotational motions induced by the M8.1 Tokachi-Oki earthquake, September 25, 2003. Geophys Res Lett 32:L08,309CrossRefGoogle Scholar
  12. Igel H, Cochard A, Wassermann J, Flaws A, Schreiber U, Velikoseltsev A, Pham Dinh N (2007) Broad-band observations of earthquake-induced rotational ground motions. Geophys J Int 168(1):182–196CrossRefGoogle Scholar
  13. Kurrle D, Igel H, Ferreira AMG, Wassermann J, Schreiber U (2010) Can we estimate local Love wave dispersion properties from collocated amplitude measurements of translations and rotations? Geophys Res Lett 37(4):1–5CrossRefGoogle Scholar
  14. Landès M, Hubans F, Shapiro NM, Paul A, Campillo M (2010) Origin of deep ocean microseisms by using teleseismic body waves. J Geophys Res 115(B5):1–14CrossRefGoogle Scholar
  15. Longuet-Higgins M (1950) A theory of the origin of microseisms. Philos Trans R Soc Lond Ser A: Math Phys Sci 243(857):1–35CrossRefGoogle Scholar
  16. McLeod D, Stedman G, Webb T, Schreiber U (1998) Comparison of standard and ring laser rotational seismograms. Bull Seismol Soc Am 88(6):1495Google Scholar
  17. McNamara DE, Buland RP (2004) Ambient noise levels in the continental United States. Bull Seismol Soc Am 94(4):1517–1527CrossRefGoogle Scholar
  18. Megies T, Beyreuther M, Barsch R, Krischer L, Wassermann J (2011) Obspy–what can it do for data centers and observatories? Ann Geophys 54(1):47–58Google Scholar
  19. Nishida K, Kawakatsu H, Fukao Y, Obara K (2008) Background Love and Rayleigh waves simultaneously generated at the Pacific Ocean floors. Geophys Res Lett 35(16):1–5CrossRefGoogle Scholar
  20. Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber KU (2000) Ring laser detection of rotations from teleseismic waves. Geophys Res Lett 27(21):3553CrossRefGoogle Scholar
  21. Pham N, Igel H, Wassermann J, Kaser M, de La Puente J, Schreiber U (2009) Observations and modeling of rotational signals in the P-coda: constraints on crustal scattering. Bull Seismol Soc Am 99(2B):1315CrossRefGoogle Scholar
  22. Schreiber K, Hautmann J, Velikoseltsev A, Wassermann J, Igel H, Otero J, Vernon F, Wells J (2009) Ring laser measurements of ground rotations for seismology. Bull Seismol Soc Am 99(2B):1190CrossRefGoogle Scholar
  23. Stedman G, Li Z, Bilger H (1995) Sideband analysis and seismic detection in a large ring laser. Appl Opt 34(24):5375–5385CrossRefGoogle Scholar
  24. Widmer-Schnidrig R, Zürn W (2009) Perspectives for ring laser gyroscopes in low-frequency seismology. Bull Seismol Soc Am 99(2B):1199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Celine Hadziioannou
    • 1
    Email author
  • Peter Gaebler
    • 2
  • Ulrich Schreiber
    • 3
  • Joachim Wassermann
    • 1
  • Heiner Igel
    • 1
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversitätMunichGermany
  2. 2.Helmholtz-Zentrum PotsdamDeutsches GeoForschungsZentrum GFZPotsdamGermany
  3. 3.Forschungseinrichtung SatellitengeodäsieFundamental Station WettzellBad KötztingGermany

Personalised recommendations