Advertisement

Journal of Seismology

, Volume 17, Issue 1, pp 27–49 | Cite as

Low signal-to-noise event detection based on waveform stacking and cross-correlation: application to a stimulation experiment

  • Katrin Plenkers
  • Joachim R. R. RitterEmail author
  • Marion Schindler
Original Article

Abstract

We study the microseismicity (M L  < 2) in the region of Landau, SW Germany. Here, due to thick sediments (~3 km) and high cultural seismic noise, the signal-to-noise ratio is in general very low for microearthquakes. To gain new insights into the occurrence of very small seismic events, we apply a three-step detection approach and are able to identify 207 microseismic events (−1 < M L  < ~1) with signal-to-noise ratios smaller than 3. Recordings from a temporary broadband network are used with station distances of approximately 10 km. First, we apply a short-term to long-term average detection algorithm for data reduction. The detection algorithm is affected severely by transient noise signals. Therefore, the most promising detections, selected by coinciding triggers and high-amplitude measures, are reviewed manually. Thirteen seismic events are identified in this way. Finally, we conduct a cross-correlation analysis. As master template, we use the stacked waveforms of five manually detected seismic events with a repeating waveform. This search reveals additional 194 events with a cross-correlation coefficient exceeding 0.65 which ensures a stable identification. Our analysis shows that the repeating events occurred during the stimulation of a geothermal reservoir within a source region of only about 0.5 km3. Natural background seismicity exceeding our detection level of M L  ~ 0.7 is not found in the region of Landau by our analysis.

Keywords

Induced seismicity Event detection 

Notes

Acknowledgements

This study was funded by the Ministry of Environment, Forestry and Consumer Protection of Rhineland-Palatinate. The TIMO project was funded by the Geophysical Institute of the Karlsruhe Institute of Technology which also provided the KABBA instruments. Data for Fig. 10 were provided by geo x GmbH. Figure 1 was produced using GMT (Wessel and Smith 1998) and data analysis was conducted with SeismicHandler (Stammler 1993) and MATLAB. We thank three anonymous reviewers for their constructive comments.

References

  1. Allen R (1978) Automatic earthquake recognition and timing from single traces. Bull Seism Soc Am 68:1521–1532Google Scholar
  2. Allen R (1982) Automatic phase pickers: their present use and future prospects. Bull Seism Soc Am 72:S225–S242Google Scholar
  3. Asanuma H, Kumano Y, Niitsuma H, Wyborn D, Schanz U (2008) Identification of AE multiplets in the time and frequency domains. Progress in Acoustic Emission XIV:385–390Google Scholar
  4. Baer M, Kradolfer M (1987) An automatic phase picker for local and teleseismic events. Bull Seism Soc Am 77:1437–1445Google Scholar
  5. Baranova V, Mustaqeem A, Bell S (1999) A model for induced seismicity caused by hydrocarbon production in the Western Canada Sedimentary Basin. Can J Earth Sci 36:47–64CrossRefGoogle Scholar
  6. Barth A (2011) Neubewertung der Intensität und Quellparameter der Erdbeben in Kandel/Südpfalz von 1880 und 1903. Bautechnik 88:860–865CrossRefGoogle Scholar
  7. Barth A, Ritter J (2009) Seismicity pattern and magnitude frequencies of the Upper Rhinegraben. J Lux de Geodyn 95, abstracts. www.ecgs.lu/jlg95-abstracts/. Accessed on 22 May 2011
  8. Bartz J (1974) Die Mächtigkeit des Quartärs im Oberrheingraben. In: Illies JH, Fuchs K (eds) Approaches to Taphrogenesis. Schweitzerbarth, Stuttgart, pp 78–87Google Scholar
  9. Beyreuther M, Carniel R, Wassermann J (2008) Continuous hidden Markov models: application to automatic earthquake detection and classification at Las Canãdas caldera, Tenerife. J Volc Geotherm Res 176:513–518. doi: 10.1016/j.volgeores.2008.04.021 CrossRefGoogle Scholar
  10. Bonjer K-P (2007) nrift.36 earthquake catalogue. Geophysical Institute, Universität Karlsruhe (TH), internal reportGoogle Scholar
  11. Derer CE, Schumacher ME, Schäfer A (2005) The northern Upper Rhine Graben: basin geometry and early syn-rift tectono-sedimentary evolution. Int J Earth Sci (Geol Rundsch) 94:640–656CrossRefGoogle Scholar
  12. Doebl F, Olbrecht W (1974) An isobath map of the Tertiary base in the Rhinegraben. In: Illies JH, Fuchs K (eds) Approaches to Taphrogenesis. Schweitzerbarth, Stuttgart, pp 71–72Google Scholar
  13. Dornstädter J, Kappelmeyer O, Welter M (1999) The geothermal potential in the Upper Rhine Graben valley. European Geothermal Conference Basel ’99. Proceedings 2:77–85Google Scholar
  14. Ellsworth WL (1995) Characteristic earthquakes and long-term earthquake forecasts: implications of Central California seismicity. In: Cheng FY, Sheu MS (eds) Urban disaster mitigation: the role of science and technology. Elsevier, New York, pp 14–1Google Scholar
  15. Expertengruppe (2010) Das seismische Ereignis bei Landau vom 15. August 2009. Abschlussbericht. http://www.lgb-rlp.de/fileadmin/cd2009/images/content/endbericht_landau/Landau_Endbericht_101103_corr.pdf
  16. Giardini G (2009) Geothermal quake risks must be faced. Nature 462:848–849CrossRefGoogle Scholar
  17. Gibbons SJ, Sørensen MB, Harris DB, Ringdal F (2007) The detection and location of low magnitude earthquakes in northern Norway using multi-channel waveform correlation at regional distances. Phys Earth Planet Interiors 160:285–309CrossRefGoogle Scholar
  18. Groos J, Ritter J (2010) Seismic noise: a challenge and opportunity for seismological monitoring in densely populated areas. In: Ritter J, Oth A (eds). Induced seismicity. Cahiers du Centre Européen de Géodynamique et de Séismologie, 30:87–97Google Scholar
  19. Hurtig E, Čermák V, Haenel R, Zui V (1991) Geothermal Atlas of Europe. H. Haack Verlagsgesellschaft, GothaGoogle Scholar
  20. Kirschner S, Ritter J, Wawerzinek B (2011) Teleseismic wave front anomalies at a continental rift: no mantle anomaly below the central Upper Rhine Graben. Geophys J Int 186:447–462. doi: 10.1111/j.1365-246X.2011.05071.x CrossRefGoogle Scholar
  21. Köhler A, Ohrnberger M, Scherbaum F, Wathelet M, Cornou C (2007) Assessing the reliability of the modified three-component spatial autocorrelation technique. Geophys J Int 168:779–796CrossRefGoogle Scholar
  22. Leydecker G (2009) Erdbebenkatalog für die Bundesrepublik Deutschland mit Randgebieten für die Jahre 800–2007. Datafile, BGR HannoverGoogle Scholar
  23. Meier L, Eisbacher HG (1991) Crustal kinematics and deep structure of the northern Rhine Graben, Germany. Tectonics 10(3):621–630CrossRefGoogle Scholar
  24. Moriya H, Niitsuma H, Baria R (2003) Multiplet-clustering analysis reveals structural details within the seismic cloud at the Soultz geothermal field, France. Bull Seism Soc Am 93:1606–1620CrossRefGoogle Scholar
  25. Rabiner L, Juang B-H (1993) Fundamentals of speech recognition. Prentice Hall, Englewood CliffsGoogle Scholar
  26. Ritter JRR, Sudhaus H (2007) Characterization of small local noise sources with array seismology. Near Surface Geophysics 5:253–261Google Scholar
  27. Ritter JRR, Wagner M, Wawerzinek B, Wenzel F (2008) Aims and first results of the TIMO project—Tiefenstruktur des mittleren Oberrheingrabens. Geotect Res 95/1:151–154Google Scholar
  28. Ritter JRR, Wagner M, Bonjer KP, Schmidt B (2009) The 2005 Heidelberg and Speyer earthquakes and their relationship to active tectonics in the central Upper Rhine Graben. Int J Earth Sci 98(3):697–705CrossRefGoogle Scholar
  29. Schad A (1962) Das Erdölfeld Landau. Abh Geol Landesamt Baden-Württemberg 4:81–101Google Scholar
  30. Schaff DP, Waldhauser F (2010) One magnitude unit reduction in detection threshold by cross correlation applied to Parkfield (California) and China seismicity. Bull Seism Soc Am 100:3224–3238. doi: 10.1785/0120100042 CrossRefGoogle Scholar
  31. Schindler M, Baumgärtner J, Gandy T, Hauffe P, Hettkamp T, Menzel H, Penzkofer P, Teza D, Tischner T, Wahl G (2010) Successful hydraulic stimulation techniques for electric power production in the Upper Rhine Graben, Central Europe. Proceedings World Geothermal Congress 2010 Bali, Indonesia, 7 pagesGoogle Scholar
  32. Schmidt B, Rogulic, B, Ritter, J (2010) Relationship between reduced injection rates and reduced seismicity – 3 years of field data from the commercial geothermal power plant Landau (Germany). In: Ritter J, Oth A (eds) Induced Seismicity, Cahiers du Centre Européen de Géodynamique et de Séismologie, 30:46Google Scholar
  33. Shearer PM (1994) Global seismic event detection using a matched filter on long-period seismograms. J Geophys Res 99:13,713–13,725Google Scholar
  34. Simpson DW (1986) Triggered earthquakes. Ann Rev Earth Planet Sci 21:21–42CrossRefGoogle Scholar
  35. Stammler K (1993) SeismicHandler—programmable multichannel data handler for interactice and automatic processing of seismological analyses. Comp Geosciences 19:135–140CrossRefGoogle Scholar
  36. Stange S (2006) ML determination for local and regional events using a sparse network in Southwestern Germany. J Seismol 10(2):247–257. doi: 10.1007/s10950-006-9010-6 CrossRefGoogle Scholar
  37. Tong C, Kennett BLN (1996) Automatic seismic event recognition and later phase identification for broadband seismograms. Bull Seism Soc Am 86:1896–1909Google Scholar
  38. Wessel P, Smith WHF (1998) New, improved version of Generic Mapping Tools released. Eos, Trans Am geophys Union 79:579CrossRefGoogle Scholar
  39. Wilson D, Leon J, Aster R, Ni J, Schlue J, Grand S, Semken S, Baldridge S, Gao W (2002) Broadband seismic background noise at temporary seismic stations observed on a regional scale in the Southwestern United States. Bull Seism Soc Am 92:3335–3341CrossRefGoogle Scholar
  40. Withers M, Aster R, Young C, Beiriger J, Harris M, Moore S, Trujillo J (1998) A comparison of select trigger algorithms for automated global seismic phase and event detection. Bull Seism Soc Am 88:95–106Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Katrin Plenkers
    • 1
    • 2
  • Joachim R. R. Ritter
    • 1
    Email author
  • Marion Schindler
    • 3
  1. 1.Karlsruhe Institute of TechnologyGeophysical InstituteKarlsruheGermany
  2. 2.Swiss Seismological Survey (SED)ETH ZurichZurichSwitzerland
  3. 3.BESTEC GmbHLandauGermany

Personalised recommendations