Journal of Seismology

, Volume 16, Issue 4, pp 777–786 | Cite as

High-frequency noise caused by wind in large ring laser gyroscope data

  • A. Gebauer
  • K. U. Schreiber
  • T. Klügel
  • N. Schön
  • U. Ulbrich
Original Article


The large ring laser gyroscope at the Geodetic Observatory Wettzell provides unique data of the rotational component of seismic waves. Wind has been identified as a major source of noise at short periods below 5 min. Strong winds increase the level of detected background noise either through surface friction or through wind load on hill slopes. Since our G ring laser demonstrated a routinely achieved sensitivity for rotations of 10 picorad/s when averaged over 30 s, very small effects become detectable. Using a local finite element model and applying a digital terrain model with 25 m spatial resolution, the effect of local wind forces on tilt and horizontal rotations at the ring laser site was calculated. The transfer of forces by wind ram pressure or surface friction is strongly controlled by the resolution of the terrain model or the land use, respectively. The maximum deformation caused by real wind fields reaches a few tenths of nanorads for both tilt and horizontal rotation. While the tilts are too small to affect the ring laser measurements by a change in its inclination, the horizontal rotations can be detected by the ring laser if the signal builds up within a few seconds or tens of seconds. The comparison of the modelled rotation rate time series with measured ring laser data shows a reasonable agreement in amplitude and waveform, however the correction of the ring laser time series is limited by the crude sampling of the wind measurements.


Ring laser Seismology Finite element models Crustal deformation 



This study is funded by the German Research Foundation (DFG) under the Project SCHR 645/2-3 which is gratefully acknowledged.


  1. Abaqus Inc. (2007) ABAQUS documentation, version 6.7.Google Scholar
  2. Altair Engineering, Inc. (2008) Accessed 21 October 2008
  3. Basis-DLM (2010) Digital LAND use Model 1:25000 Federal Agency of Cartography and Geodesy. Accessed 1 May 2010
  4. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, New YorkGoogle Scholar
  5. Donoho DL, Johnstone IM (1995) Adapting to unknown smoothness via wavelet shrinkage. J Am Stat Assoc 90(432):1200–1224CrossRefGoogle Scholar
  6. DTM-25 (2010) Digital Terrain Model 1:25000. Federal Agency of Cartography and Geodesy. Accessed 1 May 2010
  7. Emeis S, Zilitinkevich SS (1991) Resistance law, effective roughness length, and deviation angle over hilly terrain. Bound Lay Meteor 55(1–2):191–198CrossRefGoogle Scholar
  8. Emeis S (1987) Pressure drag and effective roughness length with neutral stratification. Bound Lay Meteor 39(4):379–401CrossRefGoogle Scholar
  9. Gebauer A (2009) The impact of topographic and geological features on deformations of the upper crust. Dissertation, Friedrich-Schiller-University Jena. Accessed 10 July 2011
  10. Gebauer A, Steffen H, Kroner C, Jahr T (2010) Finite element modelling of atmosphere loading effects on strain, tilt and displacement at multi-sensor stations. GJI 181(3):1593–1612. doi: 10.1111/j.1365-246X.2010.04549.x Google Scholar
  11. Hadziioannou C, Gaebler P, Schreiber U, Wassermann J, Igel H (2012) Examining ambient noise using co-located measurements of rotational and translational motion. J Seismol (this issue)Google Scholar
  12. Igel H, Nader M-F, Kurrle D, Ferreira AM, Wassermann J, Schreiber KU (2011) Observations of Earth's toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake. Geophys Res Lett. doi: 10.1029/2011GL049045
  13. Klügel T (2001) Analyse der Zeitreihen lokaler Rotationssensoren - Entwicklung eines Orientierungsmodells - Schlussbericht DFG-Forschungsprojekt ROT-SKOP (SCHN 240/6), 78, Wettzell, Accessed 20 July 2011
  14. Klügel T (2002) Tilt variations at shallow depth: implications for the installation of a laser gyroscope at the Geodetic Observatory Wettzell. Bull d'Inf Marées Terr 137:10927–10930Google Scholar
  15. Klügel T, Schreiber U, Schlüter, Velikoseltsev A (2008) Advances in inertial Earth rotation measurements—new data from the Wettzell G ring laser. Proceedings of the "Journées Systèmes de Référence Spatio-temporels 2007", Observatoire de Paris, 17-19 September 2007, eds. Nicole Capitaine, ISBN: 978-2-901057-59-8, 173-176.Google Scholar
  16. Kroner C, Jahr T, Kuhlmann S, Fischer KD (2005) Pressure-induced noise on horizontal seismometer and strainmeter records evaluated by finite element modelling. GJI 161:167–178Google Scholar
  17. Kümpel HJ (1982) Tilt measurements. What do they tell us? Terra Cognita 2:391–399Google Scholar
  18. Rabbel W, Zschau J (1985) Static deformations and gravity changes at the earth’s surface due to atmospheric loading. J Geophys 56:81–99Google Scholar
  19. Schreiber U, Klügel T, Stedman GE (2003) Earth tide and tilt detection by a ring laser gyroscope. J Geophys Res 108(B2):2132. doi: 10.1029/2001JB000569 CrossRefGoogle Scholar
  20. Schreiber KU, Velikoseltsev A, Rothacher M, Klügel T, Stedman GE, Wiltshire DL (2004) Direct measurement of diurnal polar motion by ring laser gyroscopes. JGR 109(B6):B06405CrossRefGoogle Scholar
  21. Schreiber U, Klügel T, Velikoseltsev A, Schlüter W, Stedman G, Wells JP (2009) The large ring laser G for continuous earth rotation monitoring. Pure Appl Geophys 166(8):1485–1498. doi: 10.1007/s00024-004-0490-4 CrossRefGoogle Scholar
  22. Schreiber U, Klügel T, Wells J-PR, Hurst RB, Gebauer A (2011) How to detect the chandler and the annual wobble of the earth with a large ring laser gyroscope. Phys Rev Lett 107(17):173904. doi: 10.1103/PhysRevLett.107.173904 CrossRefGoogle Scholar
  23. Shumway RH, Stoffer DS (2006) Time series analysis and its applications. Springer. ISBN: 978-0387293172Google Scholar
  24. Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1995) Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J Geophys Res 100(B1):675–690CrossRefGoogle Scholar
  25. Stedman GE (1997) Ring laser tests of fundamental physics and geophysics. Rep Prog Phys 60:615–688CrossRefGoogle Scholar
  26. Steffen H (2006) The importance of instrument location on barometric pressure-induced noise. Bull d'Inf Marées Terr 141:11293–11302Google Scholar
  27. Suryanto WJ, Wassermann J, Igel H, Cochard A, Vollmer D, Scherbaum F, Velikoseltsev A, Schreiber U (2006) First comparison of seismic array derived rotations with direct ring laser measurements of rotational ground motion. Bull Seism Soc Am 96(6):2059–2071. doi: 10.1785/0120060004 CrossRefGoogle Scholar
  28. Velikoseltsev A,Schreiber U, Klügel, Voigt TS, Graham RD (2008) Sagnac Interferometry for the Determination of Rotations in Geodesy and Seismology, 15th St. Petersburg International Conference on Integrated Navigation Systems, St. PetersburgGoogle Scholar
  29. Velikoseltsev A, Schreiber U, Klügel T (2009) Modelling of episodic-transient signals in measurements of large ring lasers. Final report of the DFG research project SCHR 645/2 (MOD-TRANS). Technical University MunichGoogle Scholar
  30. Weise A (1992) Neigungsmessungen in der Geodynamik - Ergebnisse von der 3-Komponenten-Station Metsähovi. Technical University Clausthal, DissertationGoogle Scholar
  31. Zürn W, Exß J, Steffen H, Kroner C, Jahr T, Westerhaus M (2007) On reduction of long-period horizontal seismic noise using local barometric pressure. GJI 171(2):780–796. doi: 10.1111/j.1365-246X.2007.03553.x Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Gebauer
    • 1
  • K. U. Schreiber
    • 2
  • T. Klügel
    • 2
  • N. Schön
    • 3
  • U. Ulbrich
    • 3
  1. 1.Geodetic Observatory WettzellTechnical University MunichBad KötztingGermany
  2. 2.Geodetic Observatory WettzellFederal Agency for Cartography and GeodesyBad KötztingGermany
  3. 3.Institute of MeteorologyFree University BerlinBerlinGermany

Personalised recommendations