Advertisement

Journal of Seismology

, 15:625 | Cite as

3-D crustal structure in the Agadir region (SW High Atlas, Morocco)

  • Youssef Timoulali
  • Mustapha Meghraoui
Original article

Abstract

The 1960 Agadir earthquake (Mw 6.0) constitutes the most damaging earthquake event in Morocco. With the expansion of seismic networks during the last decade in Morocco, new seismic data have been collected in this region. The P and S arrivals at 19 stations located in Southern Morocco are used to investigate the lithosphere in the Agadir region. In this study, we use a linearized inversion procedure comprising two steps: (1) finding the minimal 1-D model and simultaneous relocation of hypocentres and (2) determination of local velocity structure using linearized inversion. The model parameterization in this method assumes a continuous velocity field. The resolution tests indicate that the calculated images give near true structure for the studied region from 0- to 45-km depth. The results show that the total crust thickness varies from 30 to 40 km in SW High Atlas and confirm the modest crustal tectonic shortening and thickening in the Atlas Mountains of Morocco. The inferred geological structure reconstructed from the calculated image illustrates the existence of fault-related folding. The evidence for coseismic ruptures in 1960 on the Kasbah anticline combined with the 1960 earthquake hypocentre located in the tomographic image determines the seismic potential of the active fault and related fold. The resulting tomographic image shows a high-velocity anomalies that could be associated with the location of deep active fault (10–30 km) associated with the fold structure. In the South Atlas, theses anomalies could be associated with the South atlas thrust front structure.

Keywords

Agadir Earthquakes Seismic tomography Crustal velocity 

Notes

Acknowledgements

This study was supported by the CNRST, PROTARS D15/41. Some of the figures were prepared using the public domain GMT software (Wessel and Smith 1998). Topography in figures is from GEBCO_nc8 and SRTM 3-arc-second (∼90 m) digital elevation model (Farr and Kobrick 1998).

References

  1. Ambroggi R (1963) Etude géologique du versant méridional du haut Atlas occidental et de la plaine du Souss. Notes et mémoire du service Géologique du Maroc, 157Google Scholar
  2. Ayadi A, Dorbath C, Ousadou F, Chikh M, Bounif A, Meghraoui M (2008) The Zemmouri earthquake rupture zone (Mw 6.8, Algeria): aftershocks sequence relocation, seismic tomography and 3D velocity model. J Geophys Res 113:B09301, doi: 10.1029/2007JB005257 CrossRefGoogle Scholar
  3. Ayarza P, Alvarez-Lobato F, Teixell A, Arboleya ML, Teson E, Julivert M, Charroud M (2005) Crustal structure under the central High Atlas Mountains (Morocco) from Geological and gravity data. Tectonophysics 400:67–84CrossRefGoogle Scholar
  4. Becker JJ et al (2009) Global bathymetry and elevation data at 30 Arc Seconds Resolution: SRTM30_PLUS. Marine Geodesy 32(4):355–371, doi: 10.1080/01490410903297766 CrossRefGoogle Scholar
  5. Chiarabba C, Amato A, Meghraoui M (1997) Tomographic images of the El Asnam fault zone, and the evolution of a seismogenic thrust-related fold. J Geophys Res 102(24):485–24498Google Scholar
  6. Chiarabba C, Bagh S, Bianchi I, De Gori P, Barch M (2010) Deep structural heterogeneities and the tectonic evolution of the Abruzzi region (Central Apennines, Italy) revealed by microseismicity, seismic tomography, and teleseismic receiver functions. Earth Planet Sci Lett 462–476. doi: 10.1016/j.epsl.2010.4.028
  7. Duffaud F, Rothé JP, Debrache J, Erimesco P, Choubert G, Faure Muret A (1962) Le séisme d’Agadir du 29 février 1960. Notes & Mém Serv Géol Maroc 154:68Google Scholar
  8. Eberhart-Phillips D (1990) Three-dimensional P and S velocity structure in the Coalinga region, California. J Geophys Res 95:15343–15363CrossRefGoogle Scholar
  9. Eberhart-Philips D (1993) Local earthquake tomography: earthquake source regions. In: Iyer HM, Hirahara K (eds) Seismic tomography: theory and practice. Chapman & Hall, LondonGoogle Scholar
  10. El Maamar K (1988) Etude tectonique de la bordure sud du Haut Atlas occidental (région d’Agadir, Maroc). Thèse d’Université, Montpellier II, pp 152Google Scholar
  11. Farr TG, Kobrick M (1998) The shuttle radar topography mission: a global DEM. In: Geological Society of America (ed) 1998 annual meeting. Boulder: Geological Society of America (GSA), p 359Google Scholar
  12. Foulger GR, Toomey DR (1989) Structure and evolution of the Hengill-Grensdalur central volcano complex, Iceland: geology, geophysics and seismic tomography. J Geophys Res 94:17511–17522CrossRefGoogle Scholar
  13. Kissling E, Ellsworth WL, Eberhart-Phillips D, Kradolfer U (1994) Initial reference models in local earthquake tomography. J Geophys Res 99:19635–19646CrossRefGoogle Scholar
  14. Lienert BR (1994) A computer program for locating earthquakes locally, regionally and globally. Honolulu: Hawaii Institute of Geophysics/SOESTGoogle Scholar
  15. Makris J, Demnati A, Klussman J (1985) Deep seismic soundings in Morocco and a crust and upper mantle model deduced from seismic and gravity data. Ann Geophys 3:369–380Google Scholar
  16. Medina F, Cherkaoui TD (1988) Precision sur le mecanisme au foyer du seisme d’Agadir (Maroc) du 29 Fevireier 1960. Place dans le cadre sismotectonique du Maroc. Geophysica 24(1–2):57–66Google Scholar
  17. Meghraoui M, Outtani F, Choukri A, Frizon de lamote D (1998) Coastal tectonics across the south Atlas thrust front and the Agadir active zone, Morocco. In: Stewart IS, Vita-Finzi C (eds) Coastal tectonics. Geology Society, London, pp 239–253, Special publication 146Google Scholar
  18. Mridekh A, Toto EA, Hafid M, El OA (2000) Structure de la plate forme Atlantique au large d’agadir (Maroc sud-occidental). Earth Plan Sci Lett 331:387–392Google Scholar
  19. Ramdani F (1998) Geodynamic implications of intermediate-depth earthquakes and volcanism in the intraplate Atlas mountains (Morocco). Phys Earth Plan Int 108:245–260CrossRefGoogle Scholar
  20. Rimi A (1999) Mantle heat flow and geotherms for the main geologic domains in Morocco. Int J Earth Sci 99:458–466CrossRefGoogle Scholar
  21. Rothé et al (1962) Le séisme d’Agadir et la séismicité du Maroc. Notes & Mém Serv Géol Maroc 154(68)Google Scholar
  22. Spakman WS, der Lee V, der Hilst V (1993) Travel-time tomography of the European–Mediterranean mantle down to 1400 km. Phys Earth Plan Int 79:3–74CrossRefGoogle Scholar
  23. Tadili B, Ramdani M, Ben Sari D, Chapochnikov K, Bellot A (1986) Structure de la croute dans le nord du Maroc. Ann Geophys 4:99–104Google Scholar
  24. Thurber CH (1983) Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California. J Geophys Res 88:8226–8236CrossRefGoogle Scholar
  25. Toomey DR, Foulger GR (1989) Tomographic inversion of local earthquake data from the Hengill-Grensdalur Central Volcano Complex, Iceland. J Geophys Res 94 (B12):17,497–917,510Google Scholar
  26. Udias A, Buforn E, Ruiz de Gauna J (1989) Catalogue of focal mechanisms of European earthquakes. Madrid, Department of Geophysics, Universidad Complutense, p 274Google Scholar
  27. Um J, Thurber C (1987) A fast algorithm for two-point seismic ray tracing. Bull Seism Soc Am 77:972–986Google Scholar
  28. Wessel P, Smith HF (1998) New improved version of the generic mapping tools released. Eos Trans AGU 79:579CrossRefGoogle Scholar
  29. Wigger P, Asch G, Giese P, Heinsohn W-D, El Alami SO, Ramdani F (1992) Crustal structure along a traverse across the Middle and High Atlas mountains derived from seismic refraction studies. Geol Rundsch 81:237–248CrossRefGoogle Scholar
  30. Zhang H, Thurber CH (2003) Double-difference tomography: the method and its application to the Hayward fault, California. Bull Seismol Soc Am 93(5):1875–1889CrossRefGoogle Scholar
  31. Zhao D, Negishi H (1998) The 1995 Kobe Earthquake: seismic of the source zone and its implication for the rupture nucleation. J Geophys Res 103:9967–9985CrossRefGoogle Scholar
  32. Zhao D, Wang K, Rogers GC, Peacock SM (2001) Tomographic image of low P velocity anomalies above slab in northern Cascadia subduction zone. Earth Planets Space 53:285–293Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre National pour la Recherche Scientifique et Technique (CNRST)RabatMorocco
  2. 2.EOST–IPG UMR 7516StrasbourgFrance

Personalised recommendations