Journal of Seismology

, Volume 15, Issue 3, pp 507–531 | Cite as

Imaging a shallow salt diapir using ambient seismic vibrations beneath the densely built-up city area of Hamburg, Northern Germany

  • Daniela KühnEmail author
  • Matthias Ohrnberger
  • Torsten Dahm
Original Article


Salt diapirs are common features of sedimentary basins. If close to the surface, they can bear a significant hazard due to possible dissolution sinkholes, karst formation and collapse dolines or their influence on ground water chemistry. We investigate the potential of ambient vibration techniques to map the 3-D roof morphology of shallow salt diapirs. Horizontal-to-vertical (H/V) spectral peaks are derived at more than 900 positions above a shallow diapir beneath the city area of Hamburg, Germany, and are used to infer the depth of the first strong impedance contrast. In addition, 15 small-scale array measurements are conducted at different positions in order to compute frequency-dependent phase velocities of Rayleigh waves between 0.5 and 25 Hz. The dispersion curves are inverted together with the H/V peak frequency to obtain shear-wave velocity profiles. Additionally, we compare the morphology derived from H/V and array measurements to borehole lithology and a gravity-based 3-D model of the salt diapir. Both methods give consistent results in agreement with major features indicated by the independent data. An important result is that H/V and array measurements are better suited to identify weathered gypsum caprocks or gypsum floaters, while gravity-derived models better sample the interface between sediments and homogeneous salt. We further investigate qualitatively the influence of the 3-D subsurface topography of the salt diapir on the validity of local 1-D inversion results from ambient vibration dispersion curve inversion.


Ambient seismic vibrations H/V method Array measurements Salt diapir 3-D effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki K (1957) Space and time spectra of stationary stochastic waves with special reference to microtremors. Bull Earthq Res Inst Univ Tokyo 35:415–456Google Scholar
  2. Arai H, Tokimatsu K (1998) Evaluation of local site effects based on microtremor H/V spectra. In: Kudo K, Okada H, Sasatani T (eds) Proc 2nd int symp on effects of surface geology on seismic motion, Yokohama, Japan, vol 2. Balkema, pp 637–680Google Scholar
  3. Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seismol Soc Am 94(1):53–63CrossRefGoogle Scholar
  4. Asten M, Henstridge J (1984) Array estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophys 49(11):1828–1837CrossRefGoogle Scholar
  5. Baldschuh R, Fritsch U, Kockel F (2001) The basement block pattern in Northwest Germany. In: Baldschuh R, Binot F, Fleig S, Kockel F (eds) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor, SchweitzerbartGoogle Scholar
  6. Bard PY (1999) Microtremor measurements: a tool for site effect estimation? In: Kudo K, Okada H, Sasatani T (eds) Proc 2nd int symp on the effects of surface geology on seismic motion, Yokohama, Japan, vol 3. Balkema, pp 1251–1279Google Scholar
  7. Benito G, del Campo P, Gutierrez-Elorza M, Sancho C (1995) Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain. Environ Geol 25:156–164CrossRefGoogle Scholar
  8. Birgören G, Özel O, Siyahi B (2009) Bedrock depth mapping of the coast south of Istanbul: comparison of analytical and experimental analyses. Turk J Eart Sci 18:1–15Google Scholar
  9. Bonnefoy-Claudet S, Cornou C, Kristek J, Ohrnberger M, Wathelet M, Bard PY, Moczo P, Fäh D, Cotton F (2004) Simulation of seismic ambient noise: I. Results of H/V and array techniques on canonical models. In: XIII WCEE, Vancouver, Canada, 1–6 August 2004. Paper no. 1120Google Scholar
  10. Buurman N (2009) Charakterisierung von Zirkularstrukturen im geologischen Untergrund Hamburgs zur Abgrenzung verkarstungsgefährdeter Bereiche. PhD thesis, University of Hamburg, Germany, pp 279Google Scholar
  11. Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. In: Proc IEEE, vol 57, pp 1408–1419Google Scholar
  12. Cara F, Cultrera G, Azzara RM, De Rubeis V, Di Giulio G, Giammarinaro MS, Tosi P, Vallone P, Rovelli A (2008) Microtremor measurements in the city of Palermo, Italy: analysis of the correlation between local geology and damage. Bull Seismol Soc Am 98(3):1354–1372CrossRefGoogle Scholar
  13. Claprood M, Asten MW (2008) Microtremor survey methods in the Tamar Valley, Launceston, Tasmania: evidence of 2D resonance from microtremor observations. In: Proc earthquake eng, Australia conference 2008. Austr Earthqu Eng SocGoogle Scholar
  14. Cornou C, Bard PY, Dietrich M (2003) Contribution of dense array analysis to the identification and quantification of basin-edge induced waves. Part II: application to Grenoble basin (French Alps). Bull Seismol Soc Am 93(6):2624–2648CrossRefGoogle Scholar
  15. Cornou C, Ohrnberger M, Boore DM, Kudo K, Bard PY (2006) Derivation of structural models from ambient vibration array recordings: results from an international blind test. In: Proc 3rd int symp on the effects of surface geology on seismic motion, Grenoble, France, 30 August–1 September 2006Google Scholar
  16. Dahm T, Heimann S, Bialowons W (2010a) A seismological study of shallow weak earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution. Nat Haz. doi: 10.1007/s11069-011-9716-9
  17. Dahm T, Kühn D, Ohrnberger M, Kröger J, Wiederhold H, Reuther CD, Dehghani A, Scherbaum F (2010b) Combining geophysical data sets to study the dynamics of shallow evaporites in urban environments: application to Hamburg, Germany. Geophys J Int 181(1):154–172CrossRefGoogle Scholar
  18. Delgado J, López CC, Giner J, Estévez A, Cuenca A, Mouna S (2000) Microtremors as geophysical exploration tool: applications and limitations. Pure Appl Geophys 157:1445–1462CrossRefGoogle Scholar
  19. Ehlers J (1995) Geologische Karte von Hamburg, 1:25000, Erläuterungen zu Blatt Nr. 2425 Hamburg. Tech. rep., Geol. Landesamt HamburgGoogle Scholar
  20. Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549CrossRefGoogle Scholar
  21. Fäh D, Kind F, Giardini D (2003) Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site effects. J Seismol 7(4):449–467CrossRefGoogle Scholar
  22. Fleischhauer CO (1979) Höhenveränderungen im Hamburger Haupt- und Landeshöhennetz. Mitteilungsblatt Vermessungsamt Hamburg 68(1):15–32Google Scholar
  23. Forbriger T (2007) Low-frequency limit for H/V studies due to tilt. In: 67th annual meeting DGG, Aachen, GermanyGoogle Scholar
  24. Gabriel G, Kirsch R, Siemon B, Wiederhold H (2003) Geophysical investigation of buried Pleistocene subglacial valleys in Northern Germany. J Appl Geophys 53:159–180CrossRefGoogle Scholar
  25. Geluk M, Paar W, Fokker P (2007) Salt. In: Wong TE, Batjes DAJ, De Jager J (eds) Geology of the Netherlands. Royal Academy of Arts and Science, pp 283–294Google Scholar
  26. Gripp K (1920) Steigt das Salz zu Lüneburg, Langenfelde und Segeberg episodisch oder kontinuierlich? Abhandlung zu Vortrag auf Hauptversammlung der Deutschen Geophysikalischen Gesellschaft in HannoverGoogle Scholar
  27. Grube F (1973) Ingenieurgeologische Erkundung der Erdfälle im Bereich des Salzstocks Othmarschen-Langenfelde (Hamburg). Tech. rep., Geol. Landesamt HamburgGoogle Scholar
  28. Guéguen P, Cornou C, Garambois S, Bantou J (2007) On the limitation of the H/V spectral ratio using seismic noise as an exploration tool: application to the Grenoble Valley (France), a small apex ratio basin. Pure Appl Geophys 164:115–134CrossRefGoogle Scholar
  29. Hanka W, Heinloo A, Jäckel KH (2000) Networked seismographs: GEOFON real-time data distribution. Orfeus Newsletter 2(3).
  30. Hinzen KG, Scherbaum F, Weber B (2003) On the resolution of H/V measurements to determine sediment thickness, a case study across a normal fault in the Lower Rhine Embayment, Germany. J Earthqu Eng 8(6):906–926Google Scholar
  31. Horike M (1985) Inversion of phase velocity of long-period microtremors to the S-wave velocity structure down to the basement in urbanized areas. J Phys Earth 33:59–96CrossRefGoogle Scholar
  32. Ibs von Seht M, Wohlenberg R (1999) Microtremor measurements used to map thickness of soft soil sediments. Bull Seismol Soc Am 89:250–259Google Scholar
  33. Ishida H, Nozawa T, Niwa M (1998) Estimation of deep surface structure based on phase velocities and spectral ratios of long-period microtremors. In: Kudo K, Okada H, Sasatani T (eds) Proc 2nd int symp on effects of surface geology on seismic motion, Yokohama, Japan, vol 2. Balkema, pp 697–704Google Scholar
  34. Jaritz W (1987) The origin and development of salt structures in NW Germany. In: Lerche I, O’Brien J (eds)Dynamical geology of salt and related structures. Academic, Orlando, pp 479–493Google Scholar
  35. Johnson KS (2008) Gypsum-karst problems in constructing dams in the USA. Environ Geol 53:945–950CrossRefGoogle Scholar
  36. Jongmans D, Ohrnberger M, Wathelet M (2005) Recommendations for array measurements and processing. Deliverable D24.13. Available at:
  37. Kawase H, Satoh T, Iwata T, Irikura K (1998) S-wave velocity structures in the San Fernando and Santa Monica areas. In: Kudo K, Okada H, Sasatani T (eds) Proc 2nd int symp on effects of surface geology on seismic motion, Yokohama, Japan, vol 2. Balkema, pp 733–740Google Scholar
  38. Kearey P (2001) The new Penguin dictionary of geology. Penguin Reference, LondonGoogle Scholar
  39. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seismol Soc Am 88(1):228–241Google Scholar
  40. Lachet C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42:377–397CrossRefGoogle Scholar
  41. Malischewsky P, Scherbaum F (2004) Love’s formula and H/V ratio (ellipticity) of Rayleigh waves. Wave Motion 40(1):57–67CrossRefGoogle Scholar
  42. Matsushima T, Okada H (1990) Determination of deep geological structures under urban areas. J Soc Explor Geophys Japan 34:21–33Google Scholar
  43. Michel C, Guéguen P, Bard PY (2008) Dynamic parameters of structures extracted from ambient vibration measurements: an aid for the seismic vulnerability assessment of existing buildings in moderate seismic hazard regions. Soil Dyn Earthqu Eng 28:593–604CrossRefGoogle Scholar
  44. Miyakoshi K, Kagawe T, Kinoshita S (1998) Estimation of geological structures under the Kobe area using the array recordings of microtremors. In: Kudo K, Okada H, Sasatani T (eds) Proc 2nd int symp on effects of surface geology on seismic motion, Yokohama, Japan, vol 2. Balkema, pp 691–696Google Scholar
  45. Mooney HM, Bolt BA (1966) Dispersive characteristics of the first three Rayleigh modes for a single surface layer. Bull Seismol Soc Am 56(1):43–67Google Scholar
  46. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. QR RTRI 30:25–33Google Scholar
  47. Niedermayer J (1962) Die geologischen Verhältnisse im Bereich des Salzstocks von Hamburg-Langenfelde. Mitteilung Geol Landesamt Hamburg 39:167–175Google Scholar
  48. Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (part 2). J Seismol Soc Japan 24:26–40. In Japanese with English abstractGoogle Scholar
  49. Ohrnberger M, Schissele E, Cornou C, Bonnefoy-Claudet S, Wathelet M, Savvaidis A, Scherbaum F, Jongmans D (2004a) Frequency wavenumber and spatial autocorrelation methods for dispersion curve determination from ambient vibration recordings. In: XIII WCEE, Vancouver, Canada, 1–6 August 2004. Paper no. 0946Google Scholar
  50. Ohrnberger M, Schissele E, Cornou C, Wathelet M, Savvaidis A, Scherbaum F, Jongmans D, Kind F (2004b) Microtremor array measurements for site effect investigations: comparison of analysis methods for field data crosschecked by simulated wavefields. In: XIII WCEE, Vancouver, Canada, pp 1–6 August 2004. Paper no. 0940Google Scholar
  51. Ohrnberger M, Schissele E, Cornou C, Wathelet M, Bonnefoy-Claudet S, Savvaidis A, Di Giuglio G, Guillier B, Köhler A, Roten D, Scherbaum F, Jongmans D, Vollmer D (2005) Report on the FK/SPAC capabilities and limitations. Deliverable D19.06. Available at
  52. Okada H (2003) The microseismic survey method. Society of Exploration Geophysicists of Japan, translated by Koya Suto, Geophysical Monograph Series No. 12, Society of Exploration GeophysicistsGoogle Scholar
  53. Okada H, Sakajiri N (1983) Estimation of an S wave velocity distribution using long-period microtremors. Geophys Bull Hokkaido Univ 42:119–143. In Japanese with English abstractGoogle Scholar
  54. Paluska A (2002) Geologische Stellungnahme zum Bebauungs-Planentwurf Gross Flottbek 10 (Osdorfer Marktplatz). Tech. rep., Geol. Landesamt HamburgGoogle Scholar
  55. Panou AA, Theodulidis NP, Hatzidimitriou PM, Savvaidis AS, Papazachos CB (2005) Reliability of ambient noise horizontal-to-vertical spectral ratio in urban environments: the case of Thessaloniki city (Northern Greece). Pure Appl Geophys 162:891–912CrossRefGoogle Scholar
  56. Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves (MASW). Geophys J 64:800–808CrossRefGoogle Scholar
  57. Parolai S, Bormann P, Milkereit C (2002) New relationships between vs, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for Cologne area (Germany). Bull Seismol Soc Am 92:2521–2527CrossRefGoogle Scholar
  58. Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32. doi: 10.1029/2004GL021115 CrossRefGoogle Scholar
  59. Picozzi M, Parolai S, Richwalski SM (2005) Joint inversion of H/V ratios and dispersion curves from seismic noise: estimating the S-wave velocity of bedrock. Geophys Res Lett 32. doi: 10.1029/2005GL022878 CrossRefGoogle Scholar
  60. Picozzi M, Strollo A, Parolai S, Durukal E, Öyel O, Karabulut S, Zschau J, Erdik M (2009) Site characterization by seismic noise in Istanbul, Turkey. Soil Dyn Earthqu Eng 29:469–482CrossRefGoogle Scholar
  61. Plaumann S (1979) Schweremessungen über dem Bereich des Salzstockes Othmarschen Langenfelde in Hamburg. Tech. rep., Niedersächsisches Landesamt für Bodenforschung (NlfB)Google Scholar
  62. Prexl A (1997) Geologie von Salzstockdächern. Master’s thesis, Institute of Geology and Paleontology, University of HannoverGoogle Scholar
  63. Reinhold K, Krull P, Kockel F (2008) Salzstrukturen Norddeutschlands: geologische Karte 1:50000. Bundesanstalt für Geowissenschaften und Rohstoffe HannoverGoogle Scholar
  64. Rumpel HM, Grelle T, Hölscher F, Stoll M (2005) Vertikales seismisches Profil (VSP) zur teufenabängigen Geschwindigkeitsbestimmung im BurVal Meßgebiet Ellerbeker Rinne. Project reportGoogle Scholar
  65. Sambridge M (1999a) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys J Int 138:479–494CrossRefGoogle Scholar
  66. Sambridge M (1999b) Geophysical inversion with a neighbourhood algorithm—II. Appraising the ensemble. Geophys J Int 138:727–746CrossRefGoogle Scholar
  67. Satoh T, Kawase H, Matsushima S (2001) Estimation of S-wave velocity structure in and around the Sendai basin, Japan, using array records of microtremors. Bull Seismol Soc Am 91(2):206–218CrossRefGoogle Scholar
  68. Scheck-Wenderoth M, Maystrenko Y, Hübscher C, Hansen M, Mazur S (2008) Dynamics of salt basins. In: Littke R, Bayer U, Gajewski D, Nelskam S (eds) Dynamics of salt basins, pp 309–322Google Scholar
  69. Scherbaum F, Hinzen KG, Ohrnberger M (2003) Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophys J Int 152:597–612CrossRefGoogle Scholar
  70. SESAME Group (2005) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretation. Deliverable D23.12. Available at
  71. Soriano M, Simon J (1995) Alluvial dolines in the Central Ebro basin, Spain: a spatial and developmental hazard analysis. Geomorphology 11:295–309CrossRefGoogle Scholar
  72. Soriano M, Simon J (2002) Subsidence rates and urban damages in alluvial dolines of Central Ebro basin (NE Spain). Environ Geol 42:467–484Google Scholar
  73. Tokimatsu K (1997) Geotechnical site characterization using surface waves. In: Ishihara K (ed) Proc IS-Tokyo ’95, 1st int conf earthquake geotech eng, Tokyo, Japan, 14–16 November 1995, vol 3. Balkema, Rotterdam, pp 1333–1368Google Scholar
  74. Tønnesen A (2004) Implementing and extending the optimized link state routing protocol. Master’s thesis, Department of Informatics, University of OsloGoogle Scholar
  75. Waltham T, Bell F, Culshaw M (2005) Sinkholes and Subsidence. Springer, Chichester, pp 382Google Scholar
  76. Warren JK (2006) Evaporites—sediments, resources and hydrocarbons. Springer, Berlin, pp 1035CrossRefGoogle Scholar
  77. Wathelet M (2005) Array recordings of ambient vibrations: surface wave inversion. PhD thesis, Liège University, Belgium, pp 177Google Scholar
  78. Wathelet M (2008) An improved neighborhood algorithm: parameter conditions and dynamic scaling. Geophys Res Lett 35. doi: 10.1029/2008GL033256 CrossRefGoogle Scholar
  79. Wathelet M, Jongmans D, Ohrnberger M (2004) Surface wave inversion using a direct search algorithm and its application to ambient vibrations measurements. Near Surf Geophys 2:211–221Google Scholar
  80. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72(41):441CrossRefGoogle Scholar
  81. Wiederhold H, Agster G, Gabriel G, Kirsch R, Schenck PF, Scheer W, Voss W (2002) Geophysikalische Erkundung eiszeitlicher Rinnen im südlichen Schleswig-Holstein. Z Angew Geol 1:13–26Google Scholar
  82. Yamamoto H (1998) An experiment for estimating S-wave velocity structure from phase velocities of Love and Rayleigh waves in microtremors. In: Kudo K, Okada H, Sasatani T (eds) Proc 2nd int symp on effects of surface geology on seismic motion, Yokohama, Japan, vol 2. Balkema, pp 705–710Google Scholar
  83. Yamanaka H, Takemura M, Ishida H, Niwa M (1994) Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bull Seismol Soc Am 84:1831–1841Google Scholar
  84. Zimmer U (2001) Quantitative Untersuchung zur Mikrorissigkeit aus akustischen Gesteinseigenschaften am Beispiel von Steinsalz und Anhydrit. Ph.D. thesis, TU Berlin, pp 191Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Daniela Kühn
    • 1
    Email author
  • Matthias Ohrnberger
    • 2
  • Torsten Dahm
    • 3
  1. 1.NORSARKjellerNorway
  2. 2.Department of GeosciencesUniversity of PotsdamPotsdamGermany
  3. 3.Institute of GeophysicsUniversity of HamburgHamburgGermany

Personalised recommendations