Journal of Seismology

, Volume 15, Issue 2, pp 411–427 | Cite as

The moment magnitude M w and the energy magnitude M e: common roots and differences

  • Peter Bormann
  • Domenico Di GiacomoEmail author


Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.


Moment and energy magnitude Gutenberg–Richter magnitude–energy relationship Seismic moment Radiated seismic energy Radiation efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe K (1981) Magnitudes of large shallow earthquakes from 1904 to 1980. Phys Earth Planet Inter 27:72–92CrossRefGoogle Scholar
  2. Abercrombie RE (1995) Earthquake source scaling relationships from − 1 to 5 M L using seismograms recorded at 22.5 km depth. J Geophys Res 100:24015–24036CrossRefGoogle Scholar
  3. Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of June 16, 1964, part 2: estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum. Bull Earthq Res Inst Univ Tokyo 44:73–88Google Scholar
  4. Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72:1217–1231CrossRefGoogle Scholar
  5. Aki K (1972) Scaling law of earthquake source time-function. Geophys J R Astron Soc 31:3–25Google Scholar
  6. Baumbach M, Bormann P (2002) Determination of source parameters from seismic spectra. In: Bormann P (ed) IASPEI new manual of seismological observatory practice, vol 2, EX 3.4. GeoForschungsZentrum, Potsdam, p 6Google Scholar
  7. Beresnev I (2009) The reality of the scaling law of earthquake-source spectra? J Seismol 13:433–436, doi: 10.1007/s10950-008-9136-9 CrossRefGoogle Scholar
  8. Boatwright J, Choy GL (1986) Teleseismic estimates of the energy radiated by shallow earthquakes. J Geophys Res 91:2095–2112CrossRefGoogle Scholar
  9. Boatwright J, Choy GL (1989) Acceleration spectra for subduction zone earthquakes. J Geophys Res 94(B11):15541–15553CrossRefGoogle Scholar
  10. Bormann P, Saul J (2008) The new IASPEI standard broadband magnitude mB. Seismol Res Lett 79(5):699–706CrossRefGoogle Scholar
  11. Bormann P, Saul J (2009a) Earthquake magnitude. In: Meyers R (ed) Encyclopedia of complexity and systems science, vol 3. Springer, Heidelberg, pp 2473–2496Google Scholar
  12. Bormann P, Saul J (2009b) A fast, non-saturating magnitude estimator for great earthquakes. Seismol Res Lett 80(5):808–816. doi: 10.1785/gssrl.80.5.808 CrossRefGoogle Scholar
  13. Bormann P, Baumbach M, Bock M, Grosser H, Choy GL, Boatwright JJ (2002) Seismic sources and source parameters. In: Bormann P (ed) IASPEI new manual seismological observatory practice, vol 1, chapter 3. GeoForschungsZentrum, Potsdam, p 94Google Scholar
  14. Bormann P, Liu R, Ren X, Gutdeutsch R, Kaiser D, Castellaro S (2007) Chinese national network magnitudes, their relation to NEIC magnitudes, and recommendations for new IASPEI magnitude standards. Bull Seismol Soc Am 97:114–127CrossRefGoogle Scholar
  15. Bormann P, Liu R, Xu Z, Ren K, Zhang L, Wendt S (2009) First application of the new IASPEI teleseismic magnitude standards to data of the China National Seismographic Network. Bull Seismol Soc Am 99(3):1868–1891. doi: 10.1785/0120080010 CrossRefGoogle Scholar
  16. Braunmiller J, Kradolfer U, Baer M, Giardini D (2002) Regional moment tensor determinations in the European-Mediterranian area—initial results. Tectonophysics 356:5–22CrossRefGoogle Scholar
  17. Braunmiller J, Deichmann N, Giardini D, Wiemer S, and the SED Magnitude Working Group (2005) Homogeneous moment-magnitude calibration in Switzerland. Bull Seismol Soc Am 95:58–74CrossRefGoogle Scholar
  18. Brune JN (1970) Tectonic stress and the spectra of shear waves from earthquakes. J Geophys Res 75:4997–5009CrossRefGoogle Scholar
  19. Choy GL, Boatwright J (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100:18205–18228CrossRefGoogle Scholar
  20. Choy GL, Kirby S (2004) Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys J Int 159:991–1012CrossRefGoogle Scholar
  21. Choy GL, McGarr A, Kirby SH, Boatwirght J (2006) An overview of the global variability in radiated energy and apparent stress. In: Abercrombie R, McGarr A, Kanamori H (eds) Radiated energy and the physics of earthquake faulting. AGU Geophys Monogr Ser 170:43–57Google Scholar
  22. Di Bona M, Rovelli A (1988) Effects of bandwidth limitation on stress drop estimated from integrals of the ground motion. Bull Seismol Soc Am 78:1818–1825Google Scholar
  23. Di Giacomo D, Parolai S, Bormann P, Grosser H, Saul J, Wang R, Zschau J (2010a) Suitability of rapid energy magnitude estimations for emergency response purposes. Geophys J Int 180:361–374. doi: 10.1111/j.1365-246X.2009.04416.x CrossRefGoogle Scholar
  24. Di Giacomo D, Parolai S, Bormann P, Grosser H, Saul J, Wang R, Zschau J (2010b) Erratum to “Suitability of rapid energy magnitude estimations for emergency response purposes”. Geophys J Int 181:1725–1726. doi: 10.1111/j.1365-246X.2010.04610.x Google Scholar
  25. Duda S, Kaiser D (1989) Spectral magnitudes, magnitude spectra and earthquake quantification; the stability issue of the corner period and of the maximum magnitude for a given earthquake. Tectonophysics 166:205–219CrossRefGoogle Scholar
  26. Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86(2):2825–2852CrossRefGoogle Scholar
  27. Eshelby JD (1969) The elastic field of a crack extending non-uniformly under general anti-plane loading. J Mech Phys Solids 8:100–104Google Scholar
  28. Grünthal G, Wahlström R (2003) An M w based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J Seismol 7:507–531CrossRefGoogle Scholar
  29. Grünthal G, Wahlström R, Stromeyer D (2009) The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC) – updated and expanded to the last millennium. J Seismol 13:517–541. doi: 10.1007/s10950-008-9144-9 CrossRefGoogle Scholar
  30. Gutenberg B (1945a) Amplitude of surface waves and magnitude of shallow earthquakes. Bull Seismol Soc Am 35:3–12Google Scholar
  31. Gutenberg B (1945b) Amplitudes of P, PP, and S and magnitude of shallow earthquakes. Bull Seismol Soc Am 35:57–69Google Scholar
  32. Gutenberg B (1945c) Magnitude determination of deep-focus earthquakes. Bull Seismol Soc Am 35:117–130Google Scholar
  33. Gutenberg B, Richter CF (1956a) Magnitude and energy of earthquakes. Ann Geofis 9:1–15Google Scholar
  34. Gutenberg B, Richter CF (1956b) The energy of earthquakes. Q J Geol Soc London 17:1–14CrossRefGoogle Scholar
  35. Hanks C, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350CrossRefGoogle Scholar
  36. Hara T (2007a) Measurement of the duration of high-frequency energy radiation and its application to determination of the magnitudes of large shallow earthquakes. Earth Planets Space 59:227–231Google Scholar
  37. Hara T (2007b) Magnitude determination using duration of high frequency radiation and displacement amplitude: application to tsunami earthquakes. Earth Planets Space 59:561–565Google Scholar
  38. Hartzel SH, Heaton T (1985) Teleseismic time functions for large, shallow subduction zone earthquakes. Bull Seismol Soc Am 75(4):965–1004Google Scholar
  39. Haskell NA (1964) Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull Seismol Soc Am 54(6):1811–1841Google Scholar
  40. Houston H (1999) Slow ruptures, roaring tsunamis. Nature 400:409–410CrossRefGoogle Scholar
  41. Houston H, Kanamori H (1986) Source spectra of great earthquakes: teleseismic constraints on rupture process and strong motion. Bull Seismol Soc Am 76:19–42Google Scholar
  42. Husseini MI (1977) Energy balance for formation along a fault. Geophys J R Astron Soc 49:699–714Google Scholar
  43. IASPEI (2005) Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data.
  44. Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size? Geophys Res Lett 28(17):3349–3352CrossRefGoogle Scholar
  45. Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Planet Earth Inter 6:346–359CrossRefGoogle Scholar
  46. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987CrossRefGoogle Scholar
  47. Kanamori H (1978) Quantification of earthquakes. Nature 271(2):411–414CrossRefGoogle Scholar
  48. Kanamori H (1983) Magnitude scale and quantification of earthquakes. Tectonophysics 93:185–199CrossRefGoogle Scholar
  49. Kanamori H (2006) The radiated energy of the 2004 Sumatra-Andaman earthquake. In: Abercrombie R, McGarr A, Kanamori H (eds) Radiated energy and the physics of earthquake faulting. AGU Geophys Monogr Ser 170:59–68Google Scholar
  50. Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095Google Scholar
  51. Kanamori H, Kikuchi M (1993) The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361:714–716CrossRefGoogle Scholar
  52. Kanamori H, Brodsky EE (2004) The physics of earthquakes. Rep Prog Phys 67:1429–1496. doi: 10.1088/0034-4885/67/8/R03 CrossRefGoogle Scholar
  53. Knopoff L (1958) Energy release in earthquakes. Geophys J 1:44–52CrossRefGoogle Scholar
  54. Kostrov BV (1966) Unsteady propagation of longitudinal shear cracks. J Appl Math Mech (Engl. transl.) 30:1241–1248Google Scholar
  55. Kostrov BV (1974) Seismic moment and energy of earthquakes, and seismic flow of rock, Izv. Acad Sci USSR, Phys Solid Earth (English Transl) 1:23–40Google Scholar
  56. Krüger F, Ohrnberger M (2005) Tracking the rupture of the M w = 9.3 Sumatra earthquake over 1,150 km at teleseismic distances. Nature 435:937–939. doi: 10.1038/nature03696 Google Scholar
  57. Kwiatek G, Plenkers K, Nakatani M, Yabe Y, Dresen G, JAGUAR-Group (2010) Frequency-magnitude characteristics down to magnitude − 4.4 for induced seismicity recorded at Mponeng Gold Mine, South Africa. Bull Seismol Soc Am 100(3):1165–1173. doi: 10.1785/0120090277 CrossRefGoogle Scholar
  58. Lomax A, Michelini A (2009a) M wpd: a duration-amplitude procedure for rapid determination of earthquake magnitude and tsunamigenic potential from P waveforms. Geophys J Int 176:200–214. doi: 10.1111/j.1365-246X.2008.03974.x CrossRefGoogle Scholar
  59. Lomax A, Michelini A (2009b) Tsunami early warning using earthquake rupture duration. Geophys Res Lett 36:L09306. doi: 10000.1029/2009GL037223 CrossRefGoogle Scholar
  60. Lomax A, Michelini A, Piatanesi A (2007) An energy-duration procedure for rapid and accurate determination of earthquake magnitude and tsunamigenic potential. Geophys J Int 170:1195–1209. doi: 10.1111/j.1365-246X.2007.03469.x CrossRefGoogle Scholar
  61. Newman AV, Okal EA (1998) Teleseismic estimates of radiated seismic energy: the E/M o for tsunami earthquakes. J Geophys Res 103:26885–26897CrossRefGoogle Scholar
  62. Okal EA, Talandier J (1989) M m: a variable period mantle magnitude. J Geophys Res 94:4169–4193CrossRefGoogle Scholar
  63. Orowan E (1960) Mechanisms of seimic faulting in rock deformation: a symposium. Geol Soc Am Mem 79:323–345Google Scholar
  64. Papazachos BC, Kiratzi AA, Karacostas BG (1997) Towards a homogeneous moment-magnitude determination for earthquakes in Greece and the surrounding area. Bull Seismol Soc Am 87:474–483Google Scholar
  65. Parolai S, Bindi D, Durukal E, Grosser H, Milkereit C (2007) Source parameter and seismic moment-magnitude scaling for northwestern Turkey. Bull Seimol Soc Am 97(2):655–660CrossRefGoogle Scholar
  66. Péres-Campos X, Beroza GC (2001) An apparent mechanism dependence of radiated seismic energy. J Geophys Res 106(B6):11127–11136CrossRefGoogle Scholar
  67. Polet J, Kanamori H (2000) Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys J Int 142:684–702CrossRefGoogle Scholar
  68. Polet J, Kanamori (2009) Tsunami earthquakes. In: Meyers R (ed) Encyclopedia of complexity and systems science, vol 10, pp 9577–9592Google Scholar
  69. Richter C (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25:1–32Google Scholar
  70. Richter C (1958) Elementary seismology. Freeman, San Francisco, p 768Google Scholar
  71. Ristau J, Rogers GC, Cassidy JF (2005) Moment magnitude-local magnitude calibration for earthquakes in Western Canada. Bull Seismol Soc Am 95:1994–2000CrossRefGoogle Scholar
  72. Savage JC, Wood MD (1971) The relation between apparent stress and stress drop. Bull Seismol Soc Am 61:1381–1388Google Scholar
  73. Schweitzer J, Kværna T (1999) Influence of source radiation patterns on globally observed short-period magnitude estimates (mb). Bull Seismol Soc Am 89(2):342–347Google Scholar
  74. Scordilis EM (2006) Empirical global relations converting M S and m b to moment magnitude. J Seismol 10:225–236CrossRefGoogle Scholar
  75. Singh SK, Ordaz M (1994) Seismic energy release in Mexican subductiion zone earthquakes. Bull Seismol Soc Am 84(5):1533–1550Google Scholar
  76. Stein S, Okal EA (2005) Speed and size of the Sumatra earthquake. Nature 434:581–582. doi: 10.1038/434581a CrossRefGoogle Scholar
  77. Stromeyer D, Grünthal G, Wahlstrom R (2004) Chi-square regression for seismic strength parameter relations, and their uncertainties, with applications to an Mw based earthquake catalogue for central, northern and northwestern Europe. J Seismol 8(1):143–153CrossRefGoogle Scholar
  78. Tsai VC, Nettles M, Ekström G, Dziewonski A (2005) Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys Res Lett 32:L17304. doi: 10.1029/2005GL023813 CrossRefGoogle Scholar
  79. Vassiliou MS, Kanamori H (1982) The energy release in earthquakes. Bull Seismol Soc Am 72:371–387Google Scholar
  80. Venkataraman A, Kanamori H (2004a) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109:B04301. doi: 0431.01029JB002549 CrossRefGoogle Scholar
  81. Venkataraman A, Kanamori H (2004b) Effect of directivity on estimates of radiated seismic energy. J Geophys Res 109:B04301. doi: 10.1029/2003JB002548 CrossRefGoogle Scholar
  82. Weinstein SA, Okal EA (2005) The mantle wave magnitude M m and the slowness parameter Θ: five years of real-time use in the context of tsunami warning. Bull Seismol Soc Am 95:779–799. doi: 10.1785/0120040112 CrossRefGoogle Scholar
  83. Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans AGU 72(41):441, 445–446CrossRefGoogle Scholar
  84. Wyss M, Brune JN (1968) Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region. J Geophys Res 73:4681–4694CrossRefGoogle Scholar
  85. Yadav RBS, Bormann P, Rastogi BK, Chopra MC (2009) A homogeneous and complete earthquake catalog for northeast India and the adjoining region. Seism Res Lett 80(4):598–616Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Division 2: Physics of the EarthGFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.International Seismological CentreThatchamUK

Personalised recommendations