Journal of Seismology

, Volume 15, Issue 1, pp 19–41 | Cite as

A strong-motion database from the Peru–Chile subduction zone

  • Maria C. Arango
  • Fleur O. Strasser
  • Julian J. Bommer
  • Ruben Boroschek
  • Diana Comte
  • Hernando Tavera
Original Article


Earthquake hazard along the Peru–Chile subduction zone is amongst the highest in the world. The development of a database of subduction-zone strong-motion recordings is, therefore, of great importance for ground-motion prediction in this region. Accelerograms recorded by the different networks operators in Peru and Chile have been compiled and processed in a uniform manner, and information on the source parameters of the causative earthquakes, fault-plane geometries and local site conditions at the recording stations has been collected and reviewed to obtain high-quality metadata. The compiled database consists of 98 triaxial ground-motion recordings from 15 subduction-type events with moment magnitudes ranging from 6.3 to 8.4, recorded at 59 different sites in Peru and Chile, between 1966 and 2007. While the database presented in this study is not sufficient for the derivation of a new predictive equation for ground motions from subduction events in the Peru–Chile region, it significantly expands the global database of strong-motion data and associated metadata that can be used in the derivation of predictive equations for subduction environments. Additionally, the compiled database will allow the assessment of existing predictive models for subduction-type events in terms of their suitability for the Peru–Chile region, which directly influences seismic hazard assessment in this region.


Peru–Chile subduction zone Strong-motion database Ground-motion processing Site classes Source and path parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe K (1972) Mechanics and tectonic implications of the 1966 and 1970 Peru earthquakes. Phys Earth Planet Inter 5:367–379CrossRefGoogle Scholar
  2. Abrahamson NA, Silva WJ (1997) Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismol Res Lett 68(1):94–127Google Scholar
  3. Aguilar Bardales Z, Alva Hurtado J (2007) Seismic microzonation of Lima. In: Proceedings of the international conference on earthquake engineering, Centro Peruano Japonés de Investigaciones Sismicas y Mitigación de Desastres (CISMID), Universidad Nacional de Ingeniería, Lima, Peru. Available online at: Last accessed November 2009 (in Spanish)
  4. Akkar S, Bommer JJ (2006) Influence of long-period filter cut-off on elastic spectral displacements. Earthq Eng Struct Dyn 35(9):1145–1165CrossRefGoogle Scholar
  5. Alva Hurtado J (2005) Sismo de Intraplaca ocurrido en Tarapacá el 13 de Junio del 2005. Presentation at the Centro Peruano Japones de Investigaciones Sismicas y Mitigacion de Desastres (CISMID), Universidad Nacional de Ingenieria, Lima, Peru (in Spanish)Google Scholar
  6. Araneda C, Saragoni GR (1994) Project of geological survey of strong motion site in Central Chile. Report for the Kajima Institute of Construction Technology of Tokyo, Santiago, ChileGoogle Scholar
  7. Astiz L, Lay T, Kanamori H (1988) Large intermediate-depth earthquakes and the subduction process. Phys Earth Planet Inter 53(1–2):80–166CrossRefGoogle Scholar
  8. Atkinson GM, Boore DM (2003) Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 93(4):1703–1729CrossRefGoogle Scholar
  9. Atkinson GM, Boore DM (2008) Erratum to: Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull Seismol Soc Am 98(4):2567–2569CrossRefGoogle Scholar
  10. Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4(11):686–692CrossRefGoogle Scholar
  11. Beck S, Barrientos S, Kausel E, Reyes M (1998) Source characteristics of historic earthquakes along the central Chile subduction zone. J South Am Earth Sci 11(2):115–129CrossRefGoogle Scholar
  12. Bernal I, Tavera H (2007a) Peak accelerations recorded in the City of Lima. In: The August 15, 2007 (7.0 ML) Pisco Earthquake (Preliminary report). Dirección de Sismología, Instituto Geofísico del Perú (IGP) (in Spanish)Google Scholar
  13. Bernal I, Tavera H (2007b) Peak accelerations recorded in the City of Ica. In: The August 15, 2007 (7.0 ML) Pisco Earthquake (Preliminary report). Dirección de Sismología, Instituto Geofísico del Perú (IGP) (in Spanish)Google Scholar
  14. Boore DM (2008) TSPP: a collection of FORTRAN programs for processing and manipulating time series. Available online from Last accessed December 2009
  15. Boore DM, Bommer JJ (2005) Processing of strong-motion accelerograms: needs, options and consequences. Soil Dyn Earthqu Eng 25(2):93–115CrossRefGoogle Scholar
  16. Boroschek R, Comte D (2006) Amplitude and frequency characteristics of the 2001 Southern Peru, Mw = 8.4 earthquake records. J Seismol 10(3):353–369CrossRefGoogle Scholar
  17. Cahill T, Isacks BL (1992) Seismicity and shape of the subducted Nazca plate. J Geophys Res 97(B12):17503–17529CrossRefGoogle Scholar
  18. Campbell KW, Algermissen ST, Kausel E, Highland LM (1989) Processed strong-motion data for the Central Chile earthquake of March 3, 1985: fifteen accelerograph sites owned by CHILECTRA, ENDESA, and the Department of Geology and Geophysics, University of Chile. Open-File Report 89–448, US Geological Survey, 328 ppGoogle Scholar
  19. Campbell KW, Algermissen ST, Kausel E, Highland LM (1990) Processed strong-motion data for the Central Chile aftershock of April 9, 1985: nine accelerograph sites owned by CHILECTRA, ENDESA, and the Department of Geology and Geophysics, University of Chile. Open-File Report 90–46, US Geological Survey, 171 ppGoogle Scholar
  20. Çelebi M (1987) Topographical and geological amplifications determined from strong-motion and aftershock records of the 3 March 1985 Chile earthquake. Bull Seismol Soc Am 77(4):1147–1167Google Scholar
  21. Çelebi M (1988) Processed Chile earthquake records of 3 March 1985 and aftershocks. Open-File report 87–195, revised October 1988, US Geological Survey, 254 ppGoogle Scholar
  22. Choy GL, Dewey JW (1988) Rupture process of an extended earthquake sequence: teleseismic analysis of the Chilean earthquake of March 3, 1985. J Geophys Res 93(B2):1103–1118CrossRefGoogle Scholar
  23. Cifuentes IL (1989) The 1960 Chilean earthquakes. J Geophys Res 94(B1):665–680CrossRefGoogle Scholar
  24. Comte D, Pardo M (1991) Reappraisal of great historical earthquakes in the northern Chile and southern Peru seismic gaps. Nat Hazards 4(1):23–44CrossRefGoogle Scholar
  25. Comte D, Suárez G (1995) Stress distribution and geometry of the subducting Nazca plate in northern Chile using teleseismically recorded earthquakes. Geophys J Int 122(2):419–440CrossRefGoogle Scholar
  26. Comte D, Eisenberg A, Lorca E, Pardo M, Ponce I, Saragoni R, Singh SK, Suárez G (1986) The 1985 Central Chile earthquake: a repeat of previous great earthquakes in the region? Science 233(4762):449–453CrossRefGoogle Scholar
  27. Comte D, Pardo M, Dorbath L, Dorbath C, Haessler H, Rivera L, Cisternas A, Ponce L (1994) Determination of seismogenic interplate contact zone and crustal seismicity around Antofagasta, northern Chile using local data. Geophys J Int 116(3):553–561CrossRefGoogle Scholar
  28. Cortez-Flores A (2004) Site response of the 2001 Southern Peru earthquake. MSc Thesis, Washington State UniversityGoogle Scholar
  29. Delouis B, Legrand D (2007) Mw 7.8 Tarapaca intermediate depth earthquake of 13 June 2005 (northern Chile): fault plane identification and slip distribution by waveform inversion. Geophys Res Lett 34(1):Article No. L01304Google Scholar
  30. Delouis B, Cisternas A, Dorbath L, Rivera L, Kausel E (1996) The Andean subduction zone between 22 and 25°S (northern Chile): precise geometry and state of stress. Tectonophysics 259(1–3):81–100CrossRefGoogle Scholar
  31. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478CrossRefGoogle Scholar
  32. Dorbath L, Cisternas A, Dorbath C (1990) Assessment of the size of large and great historical earthquakes in Peru. Bull Seismol Soc Am 80(3):551–576Google Scholar
  33. Douglas J (2003) What is a poor quality strong-motion record? Bull Earthquake Eng 1(1):141–156CrossRefGoogle Scholar
  34. EERI (1986) The Chile earthquake of March 3, 1985—EERI reconnaissance report. Earthq Spectra 2(2):249–508CrossRefGoogle Scholar
  35. EERI (2007) Learning from earthquakes: the Pisco, Peru, earthquake of August 15, 2007. EERI Special Earthquake Report, EERI Newsletter, October 2007Google Scholar
  36. Engdahl ER, Villaseñor A (2002) Global seismicity: 1900–1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds) International handbook of earthquake and engineering seismology. Academic, New York, pp 665–690CrossRefGoogle Scholar
  37. Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88(3):722–743Google Scholar
  38. Espinosa AF, Husid R, Algermissen ST, De las Casas J (1977) The Lima earthquake of October 3, 1974; intensity distribution. Bull Seismol Soc Am 67(5):1429–1439Google Scholar
  39. Hartzell S, Langer C (1993) Importance of model parameterization in finite fault inversions: application to the 1974 Mw 8.0 Peru earthquake. J Geophys Res 98(B12):22123–22134CrossRefGoogle Scholar
  40. International Seismological Centre (2009) EHB Bulletin. Last accessed May 2009
  41. Ji C, Zeng Y (2007) Preliminary results of the August 15, 2007 Mw 8.0 coast of central Peru earthquake. US Geological Survey web report. Available online at Last accessed November 2009
  42. Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Bull Geol Soc Am 94(3):341–361CrossRefGoogle Scholar
  43. Kausel E (1986) Los Terremotos de Agosto de 1868 y Mayo de 1877 que afectaron el Sur del Peru y Norte de Chile. Bol Acad Chil Cienc 3:8–12Google Scholar
  44. Kelleher JA (1972) Rupture zones of large South American earthquakes and some predictions. J Geophys Res 77(11):2087–2103CrossRefGoogle Scholar
  45. Langer CJ, Spence W (1995) The 1974 Peru earthquake series. Bull Seismol Soc Am 85(3):665–687Google Scholar
  46. Lee VW, Trifunac MD (1990) Automatic digitization and processing of accelerograms using PC. Report CE-90–03, Department of Civil Engineering, University of Southern California, Los Angeles, California, 115 ppGoogle Scholar
  47. Lemoine A, Madariaga R, Campos J (2001) Evidence for earthquake interaction in Central Chile: the July 1997–September 1998 sequence. Geophys Res Lett 28(14):2743–2746CrossRefGoogle Scholar
  48. Lemoine A, Madariaga R, Campos J (2002) Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones. Phys Earth Planet Inter 132(1–3):157–175CrossRefGoogle Scholar
  49. Lomnitz C (2004) Major earthquakes of Chile: a historical survey, 1535–1960. Seismol Res Lett 75(3):368–378CrossRefGoogle Scholar
  50. Luppichini N (2004) Interpretación de los acelerogramas del terremoto de Chile Central de 1985 considerando ondas sísmicas de alta frecuencia. Civil Engineering Dissertation, University of ChileGoogle Scholar
  51. McVerry G, Zhao J, Abrahamson N, Somerville P (2006) New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes. Bull N Z Soc Earthq Eng 39(1):1–58Google Scholar
  52. Mendoza C, Hartzell S, Monfret T (1994) Wide-band analysis of the 3 March 1985 central Chile earthquake: overall source process and rupture history. Bull Seismol Soc Am 84(2):269–283Google Scholar
  53. Midorikawa S (1992) Site effects on strong-motion records of the 1985 Chile earthquake and their non-linear behaviour. In: Proceedings of the 10th World Conference in Earthquake Engineering, vol 2, Madrid, Spain, 19–24 July, pp 1031–1036Google Scholar
  54. Midorikawa S, Riddell R, Cruz E (1991) Strong-motion accelerograph array in Santiago, Chile, and preliminary evaluation of site effects. Earthq Eng Struct Dyn 20(5):403–407CrossRefGoogle Scholar
  55. NEHRP (1997) Recommended provisions for seismic regulations for new buildings and other structures. Report FEMA 303, US Federal Emergency Management Agency, Washington, DCGoogle Scholar
  56. Nishenko SP (1985) Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: a quantitative reappraisal. J Geophys Res 90(B5):3589–3616CrossRefGoogle Scholar
  57. Pacheco JF, Sykes LR (2002) Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull Seismol Soc Am 82(3):1306–1349Google Scholar
  58. Pardo M, Comte D, Monfret T, Boroschek R, Astroza M (2002a) The October 15, 1997 Punitaqui earthquake (Mw=7.1): a destructive event within the subducting Nazca plate in central Chile. Tectonophysics 345(1–4):199–210CrossRefGoogle Scholar
  59. Pardo M, Comte D, Monfret T (2002b) Seismotectonic and stress distribution in the central Chile subduction zone. J South Am Earth Sci 15(1):11–22CrossRefGoogle Scholar
  60. Pritchard M, Norabuena E, Ji C, Boroschek R, Comte D, Simons M, Dixon T, Rosen P (2007) Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes. J Geophys Res 112(B3):1–24CrossRefGoogle Scholar
  61. Riddell R (1995) Inelastic design spectra accounting for soil conditions. Earthq Eng Struct Dyn 24(11):1491–1510CrossRefGoogle Scholar
  62. Rodriguez-Marek A, Bray JD, Abrahamson N (2001) An empirical geotechnical seismic site response procedure. Earthq Spectra 19(3):653–675Google Scholar
  63. Rodriguez-Marek A, Hurtado J, Cox B, Meneses J, Moreno V, Olcese M, Sancio R, Wartman J (2007) Preliminary reconnaissance report on the geotechnical engineering aspects of the August 15, 2007 Pisco, Peru Earthquake. Report of the National Science Foundation-Sponsored Geotechnical Earthquake Engineering Reconnaissance (GEER) Team. Web report available from: Last accessed November 2009
  64. Rosenblad BL, Bay JA (2008) Shear wave velocity profiles determined from SASW measurements at sites affected by the August 15th, 2007 earthquake in Peru. Report prepared for CERESIS, January 2008, 60 ppGoogle Scholar
  65. Ruiz S, Saragoni G (2005) Attenuation equations for subduction-zone earthquakes in Chile considering two seismogenic mechanisms and site effects. Proceedings, IX Jornadas Chilenas de Sismología e Ingeniería Antisísmica, Concepción, Chile, 16–19 November 2005. Paper No. A01–15 (in Spanish)Google Scholar
  66. Skarlatoudis A, Papazachos C, Margaris B (2003) Determination of noise spectra from strong motion data recorded in Greece. J Seismol 7(4):533–540CrossRefGoogle Scholar
  67. SNGM (1982) 1:250,000 geologic map of Chile. Servicio Nacional de Geologia y Mineria, ChileGoogle Scholar
  68. Stauder W (1975) Subduction of the Nazca plate under Peru as evidenced by focal mechanisms and by seismicity. J Geophys Res 80(8):1053–1064CrossRefGoogle Scholar
  69. Strasser FO, Arango MC, Bommer JJ (2010) Scaling of source dimensions for interface and intraslab subduction-zone earthquakes with moment magnitude. Seismol Res Lett (in press)Google Scholar
  70. Suárez G, Comte D (1993) Comment on ‘Seismic coupling along the Chilean subduction zone’ by BW Tichelaar and LR Ruff. J Geophys Res 98(B9):15825–15828CrossRefGoogle Scholar
  71. Tavera H, Bernal I (2005) Spatial distribution of rupture areas and seismic gaps in western Peru. Special volume N6 commemorating Alberto Giesecke, Geological Society of Peru, pp 89–92 (in Spanish)Google Scholar
  72. Tavera H, Bernal I, Strasser FO, Arango-Gaviria MC, Alarcon JE, Bommer JJ (2008) Ground motions observed during the 15 August 2007 Pisco, Peru, earthquake. Bull Earthq Eng 7(1):71–111CrossRefGoogle Scholar
  73. Tavera H, Buforn E, Bernal I, Antayhua Y, Vilacapoma L (2002) The Arequipa (Peru) earthquake of June 23, 2001. J Seismol 6(2):279–283CrossRefGoogle Scholar
  74. Tichelaar BW, Ruff LJ (1991) Seismic coupling along the Chilean subduction zone. J Geophys Res 96(B7):11997–12022CrossRefGoogle Scholar
  75. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  76. Youngs RR, Chiou SJ, Silva WJ, Humphrey JR (1997) Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol Res Lett 68(1):58–77Google Scholar
  77. Zhao J, Irikura K, Zhang J, Fukushima Y, Somerville P, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H (2006a) An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bull Seismol Soc Am 96(3):914–925CrossRefGoogle Scholar
  78. Zhao JX, Zhang J, Asano A, Ohno Y, Oouchi T, Takahashi T, Ogawa H, Irikura K, Thio HK, Somerville PG, Fukushima Y (2006b) Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull Seismol Soc Am 96(3):898–913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Maria C. Arango
    • 1
  • Fleur O. Strasser
    • 2
  • Julian J. Bommer
    • 1
  • Ruben Boroschek
    • 3
  • Diana Comte
    • 4
  • Hernando Tavera
    • 5
  1. 1.Department of Civil and Environmental EngineeringImperial College LondonLondonUK
  2. 2.Seismology UnitCouncil for GeosciencePretoriaSouth Africa
  3. 3.Department of Civil EngineeringUniversity of ChileSantiagoChile
  4. 4.Department of GeophysicsUniversity of ChileSantiagoChile
  5. 5.Seismology DepartmentGeophysical Institute of PeruLimaPeru

Personalised recommendations