Journal of Seismology

, Volume 14, Issue 4, pp 787–802 | Cite as

Pattern recognition of major asperities using local recurrence time in Alborz Mountains, Northern Iran

  • Khalil Motaghi
  • Khaled Hessami
  • Mohammad Tatar
Original Article


In this study, seismic data recorded during the period 01/01/1996 to 09/01/2009 has been used to evaluate the seismic hazard potential along the Alborz region, Northern Iran. The technique of mapping local recurrence time, T L, is used to map major asperities, which are considered as the areas with maximum hazard. We calculated T L from a and b values which are in turn derived from the frequency–magnitude relation constants within a radius of 30 km about every corner point of a 10-km spacing grid. Since b value is inversely related to applied stress, the areas with lowest b values and/or shortest T L are interpreted to locate the asperities or the areas of maximum seismic hazard. To test this method, we computed T L map using seismic catalogues before and after the 2004 Baladeh earthquake of M w 6.2. The local recurrence time map before the earthquake shows anomalously short T L in the epicentral region of the Baladeh earthquake a decade before its occurrence. The T L map after the earthquake indicates that this large event has redistributed the applied stress in the Alborz region. The microseismicity of the region after the Baladeh earthquake, however, suggests that there are two anomalies in T L map positioned in Alborz. The places where these anomalies are observed can be considered as the areas with maximum seismic hazard for future large earthquake in the Alborz region.


b Value Local recurrence time Asperity Alborz Mountains Microseismicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki K (1965) Maximum likelihood estimate of b in the formula log N = a − b M and its confidence limits. Bull Earthq Res Inst 43:237–239Google Scholar
  2. Aki K (1984) Asperities, barriers, characteristic earthquakes and strong motion prediction. J Geophys Res 89:5867–5872CrossRefGoogle Scholar
  3. Allen MB, Ghassemi MR, Shahrabi M, Qorashi M (2003) Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J Struct Geol 25:659–672CrossRefGoogle Scholar
  4. Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge University Press, Cambridge, 219 ppGoogle Scholar
  5. Amelung F, King G (1997) Earthquake scaling laws for creeping and non-creeping faults. Geophys Res Lett 24:507–510CrossRefGoogle Scholar
  6. Ashtari M, Hatzfeld D, Kamalian N (2005) Microseismicity in the region of Tehran. Tectonophysics 395:193–208CrossRefGoogle Scholar
  7. Bachmanov DM, Trifonov VG, Hessami Kh, Kozhurin AI, Ivanova TP, Rogozhin EA, Hademi MC, Jamali FH (2004) Active faults in the Zagros and central Iran. Tectonophysics 380:221–241CrossRefGoogle Scholar
  8. Bender B (1983) Maximum likelihood estimation of b-values for magnitude grouped data. Bull Seismol Soc Am 73:831–851Google Scholar
  9. Berberian M, Qorashi M, Arzhang-Ravesh B, Mohajer-Ashjai A (1985) Recent tectonics, seismotectonics and earthquake-fault hazard study of the Greater Tehran area. Contribution to the Seismotectonics of Iran, Part V, Geol. Surv. Iran, 56, 316 pp (in Persian)Google Scholar
  10. Berberian M, Qorashi M, Jackson JA, Priestley K, Wallace T (1992) The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: preliminary field and seismological observations, and its tectonic significance. Bull Seismol Soc Am 82:1726–1755Google Scholar
  11. Ebel JE, Kafka AL (1999) A Monte Carlo approach to seismic hazard analysis. Bull Seismol Soc Am 89:854–866Google Scholar
  12. Engdahl ER, Jackson JA, Myers SC, Bergman EA, Priestley K (2006) Relocation and assessment of seismicity in the Iran region. Geophys J Int 167:761–778CrossRefGoogle Scholar
  13. Frohlich C, Davis S (1993) Teleseismic b-values: or much ado about 1.0. J Geophys Res 98:631–644CrossRefGoogle Scholar
  14. Ghods A, Sobouti F (2005) Quality assessment of seismic recording: Tehran seismic telemetry network. Asian J Earth Sci 25:687–694CrossRefGoogle Scholar
  15. Gorshkov AI, Kuznetsov IV, Panza GF, Soloviev AA (2000) Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostructural criteria. Pure Appl Geophys 157:79–95CrossRefGoogle Scholar
  16. Gutenberg B, Richter C (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34:185–188Google Scholar
  17. Han SW, Choi YS (2008) Seismic hazard analysis in low and moderate seismic region-Korean peninsula. Struct Saf 30:543–558CrossRefGoogle Scholar
  18. Hessami K, Nilforoushan F, Talbot CJ (2006) Active deformation within the Zagros Mountains deduced from GPS measurements. J Geol Soc, Lond 163:143–148CrossRefGoogle Scholar
  19. Ishimoto M, Iida K (1939) Observations of earthquakes registered with the microseismograph constructed recently. Bull Earthq Res Inst 17:443–478Google Scholar
  20. Jackson JA, Priestley K, Allen M, Berberian M (2002) Active tectonics of the South Caspian Basin. Geophys J Int 148:214–245CrossRefGoogle Scholar
  21. Lay T, Wallace TC (1995) Modem global seismology. Academic, San Diego, p 358Google Scholar
  22. Nilforoushan F, Vernant P, Masson F, Vigny C, Martinod J, Abbassi M, Nankali H, Hatzfeld D, Bayer R, Tavakoli F, Ashtiani A, Doerflinger E, Daignières M, Collard P, Chéry J (2003) GPS network monitors the Arabia-Eurasia collision deformation in Iran. J Geodesy 77:411–422CrossRefGoogle Scholar
  23. Nuttli OW (1973) Seismic wave attenuation relations for eastern North America. J Geophys Res 78:855–876CrossRefGoogle Scholar
  24. Öncel AO, Wyss M (2000) The major asperities of the 1999 M w = 7.4 Izmit earthquake defined by the microseismicity of the two decades before it. Geophys J Int 143:501–506CrossRefGoogle Scholar
  25. Purcaru G, Berckhemer H (1982) Quantitative relations of seismic source parameters and classification of earthquakes. Tectonophysics 84:57–128CrossRefGoogle Scholar
  26. Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res 90(B7):5479–5495CrossRefGoogle Scholar
  27. Rezapour M (2005) Magnitude scale in the Tabriz seismic network. J Earth Space Phys 31(1):13–21 (in persian)Google Scholar
  28. Ritz J-F, Nazari H, Ghassemi A, Salamati R, Shafei A, Soleymani S, Vernant P (2006) Active transtension inside central Alborz: a new insight into northern Iran—southern Caspian geodynamics. Geology 34:477–480CrossRefGoogle Scholar
  29. Schorlemmer D, Wiemer S (2005) Microseismicity data forecast rupture area. Nature 434:1086. doi: 10.1038/4341086a CrossRefGoogle Scholar
  30. Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield: 1. Stationarity of b-values. J Geophys Res 109:B12307. doi: 10.1029/2004JB003234 CrossRefGoogle Scholar
  31. Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437:539–542. doi: 10.1038/nature04094 CrossRefGoogle Scholar
  32. Shi Y, Bolt BA (1982) The standard error of the magnitude–frequency b value. Bull Seismol Soc Am 72:1677–1687Google Scholar
  33. Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 2004 May 28 Baladeh earthquake (M w 6.2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and seismic hazard of Tehran. Geophys J Int 170:249–261CrossRefGoogle Scholar
  34. Tchalenko JS (1974) Recent destructive earthquakes in the central Alborz. Geol. Surv. Iran, Report No. 29:97–116Google Scholar
  35. Turcotte RL (1997) Fractals and chaos in Geology and Geophysics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  36. Vernant P, Nilforoushan F, Hatzfeld D et al. (2004) Present-day crustal deformation and plate kinematics in Middle East constrained by GPS measurements in Iran and Northern Oman. Geophys J Int 157:381–398CrossRefGoogle Scholar
  37. Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Letts 72:373–382Google Scholar
  38. Wiemer S, Wyss M (1997) Mapping the frequency-magnitude distribution in asperities: an improved technique to calculate recurrence times. J Geophys Res 102:15115–15128CrossRefGoogle Scholar
  39. Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency–magnitude distribution of earthquakes. Adv Geophys 45:259–302Google Scholar
  40. Wyss M, Wiemer S (2000) Change in the probability for earthquakes in southern California due to the Landers magnitude 7.3 earthquake. Science 290:1334–1338CrossRefGoogle Scholar
  41. Wyss M, Schorlemmer D, Wiemer S (2000) Mapping asperities by minima of local recurrence time: the San Jacinto-Elsinore fault zones. J Geophys Res 105:7829–7844CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Khalil Motaghi
    • 1
  • Khaled Hessami
    • 1
  • Mohammad Tatar
    • 1
  1. 1.International Institute of Earthquake Engineering and Seismology (IIEES)TehranIran

Personalised recommendations