Journal of Seismology

, Volume 15, Issue 3, pp 443–472 | Cite as

Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements

  • Brigitte Endrun
Original Article


This study applies array methods to measure the relative proportions of Love and Rayleigh waves in the ambient vibration wavefield. Information on these properties is of special relevance for frequencies around the horizontal-to-vertical (H/V) spectral amplitude ratio peak. The analysis of H/V curves, a popular technique in site characterisation, commonly assumes that the curves represent the frequency-dependent Rayleigh wave ellipticity. For the detailed interpretation of amplitudes or the inversion of the curves, it is therefore necessary to estimate and correct for the contribution of other wave types to the ambient vibration wavefield. I use available ambient vibration array measurements to determine the relative amount of Love and Rayleigh waves on the horizontal components by frequency-dependent analysis of the main propagation and polarisation directions, with a special emphasis on the H/V peak frequency as determined from the same recordings. Tests with synthetic data demonstrate the feasibility of this approach, at least in the presence of dominant source regions. Analysis of the data from 12 measurements at nine European sites, which include shallow as well as deep locations that span a wide range of impedance contrasts at the sediment-bedrock interface, indicates that the relative contribution of Rayleigh waves varies widely with frequency, from close to 0% to more than 70%. While most data sets show relative Rayleigh wave contributions between 40% and 50% around the H/V peak, there are also examples where Love waves clearly dominate the wavefield at the H/V peak, even for a site with a low impedance contrast. Longer-term measurements at one site indicate temporal variations in the relative Rayleigh wave content between day- and nighttime. Results calculated with the method introduced herein generally compare well with results of modified spatial autocorrelation analysis. These two methods might be used in a complimentary fashion, as both rely on different properties of the ambient vibration wavefield. This study illustrates that it is possible to measure the relative Rayleigh wave content of the noise wavefield from array data. Furthermore, the examples presented herein indicate it is important to estimate this property, as the assumption that there are an equal proportion of Love and Rayleigh waves is not always correct.


Ambient vibrations Surface waves Array seismology Polarisation analysis H/V spectral ratio Site characterisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst 35:415–457Google Scholar
  2. Alfaro A, Pujades LG, Goula X, Susagna T, Navarro M, Sánchez J, Canas JA (2001) Preliminary map of soil’s predominant periods in Barcelona using microtremors. Pure Appl Geophys 158:2499–2511CrossRefGoogle Scholar
  3. Anastasiadis A, Raptakis D, Pitilakis K (2001) Thessaloniki’s detailed microzoning: surface structure as basis for site response analysis. Pure Appl Geophys 158:2597–2633CrossRefGoogle Scholar
  4. Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seismol Soc Am 94(1):53–63CrossRefGoogle Scholar
  5. Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 95(5):1766–1778CrossRefGoogle Scholar
  6. Arai H, Tokimatsu K (2008) Three-dimensional vs profiling using microtremors in Kushiro, Japan. Earthq Eng Struct Dyn 37:845–859. doi: 10.1002/eqe.788 CrossRefGoogle Scholar
  7. Athanasopoulos GA, Pelekis PC, Leonidou EA (1999) Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dyn Earthqu Eng 18(2):135–149CrossRefGoogle Scholar
  8. Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006a) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167:827–837. doi: 10.1111/j.1365-246X.2006.03154.x CrossRefGoogle Scholar
  9. Bonnefoy-Claudet S, Cotton F, Bard PY (2006b) The nature of noise wavefield and its application for site effects studies. A literature review. Earth-Sci Rev 79:205–227. doi: 10.1016/j.earscirev.2006.07.004 CrossRefGoogle Scholar
  10. Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard PY (2008) Effects of Love waves on microtremor H/V ratio. Bull Seismol Soc Am 98(1):288–300. doi: 10.1785/0120070063 CrossRefGoogle Scholar
  11. Bonnefoy-Claudet S, Baize S, Bonilla LF, Berge-Thierry C, Pasten C, Campos J, Volant P, Verdugo R (2009) Site effect estimation in the basin of Santiago de Chile using ambient noise measurements. Geophys J Int 176:925–937. doi: 10.1111/j.1365-246X.2008.04020.x CrossRefGoogle Scholar
  12. Bragato PL, Laurenzano G, Barnaba C (2007) Automatic zonation of urban areas based on the similarity of H/V spectral ratios. Bull Seismol Soc Am 97(5):1404–1412. doi: 10.1785/0120060260 CrossRefGoogle Scholar
  13. Cara F, Cultrera G, Azzara RM, De Rubeis V, Di Giulio G, Giammarinaro MS, Tosi P, Vallone P, Rovelli A (2008) Microtremor measurement in the city of Palermo, Italy: analysis of the correlation between geology and damage. Bull Seismol Soc Am 98(3):1354–1372. doi: 10.1785/0120060260 CrossRefGoogle Scholar
  14. Castellaro S, Mulargia F (2009) VS30 estimates using constrained H/V measurements. Bull Seismol Soc Am 99(2A):761–773. doi: 10.1785/0120080179 CrossRefGoogle Scholar
  15. D’Amico V, Picozzi M, Baliva F, Albarello D (2008) Ambient noise measurements for preliminary site-effects characterization in the urban area of Florence, Italy. Bull Seismol Soc Am 98(3):1373–1388. doi: 10.1785/0120070231 CrossRefGoogle Scholar
  16. Di Giulio G, Rovelli A, Cara F, Azzara RM, Marra F, Basili R, Caserta A (2003) Long-duration asynchronous ground motions in the Colfiorito plain, central Italy, observed on a two-dimensional dense array. J Geophys Res 118(B10):2486. doi: 10.1029/2002JB002367 CrossRefGoogle Scholar
  17. Di Giulio G, Cornou C, Ohrnberger M, Wathelet M, Rovelli A (2006) Deriving wavefield characteristics and shear-velocity profiles from two-dimensional small-aperturre array analysis of ambient vibrations in a small-size alluvial basin, Colfiorito, Italy. Bull Seismol Soc Am 96(5):1915–1933. doi: 10.1785/0120060119 CrossRefGoogle Scholar
  18. Dravinski M, Ding G, Wen KL (1996) Analysis of spectral ratios for estimating ground motion in deep basins. Bull Seismol Soc Am 86(3):646–654Google Scholar
  19. Duval AM, Vidal S, Méneroud JP, Singer A, De Santis F, Ramos C, Romero G, Rodriguez R, Pernia A, Reyes N, Griman C (2001) Caracas, Venezuela, site effect determination with microtremors. Pure Appl Geophys 158:2513–2523CrossRefGoogle Scholar
  20. Endrun B, Renalier F (2008) Report on in-situ measurements at the 20 selected sites. Deliverable D2, NERIES-Project JRA4 Task C, EU-FP6 EC project number 026130.
  21. Endrun B, Ohrnberger M, Savvaidis A (2009) On the repeatability and consistency of ambient vibration array measurements. Bull Earthq Eng. doi: 10.1007/s10518-009-9159-9 Google Scholar
  22. Fäh D, Rüttner E, Noack F, Kruspan P (1997) Microzonation of the city of Basel. J Seismol 1:87–102CrossRefGoogle Scholar
  23. Fäh D, Kind F, Giardina D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549CrossRefGoogle Scholar
  24. Fäh D, Kind F, Giardini D (2003) Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. J Seismol 7:449–467CrossRefGoogle Scholar
  25. Garcia-Jerez A, Navarro M, Alcalá FJ, Luzón F, Pérez-Ruiz JA, Enomoto T, Vidal F, Ocaña E (2007) Shallow velocity structure using joint inverion of array and h/v spectral ratio of ambient noise: the case of Mula town (SE of Spain). Soil Dyn Earthqu Eng 27(10):907–919. doi: 10.1016/j.soildyn.2007.03.001 CrossRefGoogle Scholar
  26. Guillier B, Atakan K, Chatelain JL, Havskov J, Ohrnberger M, Cara F, Duval AM, Zacharopoulos S, Teves-Costa P, the SESAME Team (2008) Influence of instruments on the H/V spectral ratios of ambient vibrations. Bull Earthq Eng 6:3–32. doi: 10.1007/s10518-007-9039-0 CrossRefGoogle Scholar
  27. Herrmann RB (2001) Computer programs in seismology. Tech Rep version 3.1, St Louis UniversityGoogle Scholar
  28. Hobiger M, Bard PY, Cornou C, Le Bihan N (2009) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys Res Lett 34:L14,303. doi: 10.1029/2009GL038863 Google Scholar
  29. Jurkevics A (1988) Polarization analysis of three-component array data. Bull Seismol Soc Am 78(5):1725–1743Google Scholar
  30. Köhler A, Ohrnberger M, Scherbaum F, Wathelet M, Cornou C (2007) Assessing the reliability of the modified three-component spatial autocorrelation technique. Geophys J Int 168:779–796. doi: 10.1111/j.1365-246X.2006.03253.x CrossRefGoogle Scholar
  31. Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremors. Bull Seismol Soc Am 88(1):288–241Google Scholar
  32. Koukis G, Sabatakis N (2000) Engineering geological environment of Athens, Greece. Bull Eng Geol Environ 59:127–135CrossRefGoogle Scholar
  33. Lachet C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. J Phys Earth 42:377–397CrossRefGoogle Scholar
  34. Lacoss RT, Kelly EJ, Toksöz MN (1969) Estimation of seismic noise structure using arrays. Geophysics 34:21–38CrossRefGoogle Scholar
  35. Langston CA, Chiu SCC, Lawrence Z, Bodin P, Horton S (2009) Array observations of microseismic noise and the nature of H/V in the Mississippi embayment. Bull Seismol Soc Am 99(5):2893–2911. doi: 10.1785/0120080189 CrossRefGoogle Scholar
  36. LeBrun B, Hatzfeld D, Bard PY (2001) Site effect study in urban area: experimental results in Grenoble (France). Pure Appl Geophys 158:2543–2557CrossRefGoogle Scholar
  37. Lermo J, Chávez-García FJ (1994) Are microtremors useful in site response evaluation? Bull Seismol Soc Am 84(5):1350–1364Google Scholar
  38. Lunedei E, Albarello D (2009) On the seismic noise wavefield in a weakly dissipative layered Earth. Geophys J Int 177:1001–1014. doi: 10.1111/j.1365-246X.2008.04062.x CrossRefGoogle Scholar
  39. Malischewsky PG, Scherbaum F (2004) Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40:57–67. doi: 10.1016/j.wavemoti.2003.12.015 CrossRefGoogle Scholar
  40. Maresca R, Galluzzo D, Del Pezzo E (2006) H/V spectral ratios and array techniques applied to ambient noise recorded in the Colfiorito Basin, Central Italy. Bull Seismol Soc Am 96(2):490–505. doi: 10.1785/0120050057 CrossRefGoogle Scholar
  41. Nagashima E, Maeda T (2005) Inversion analysis on surface wave dispersion curves and H/V spectra by neighbourhood algorithm. In: 6th World congress of structural and multidisciplinary optimization, Rio de JaneiroGoogle Scholar
  42. Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Rep RTRI 30(1):25–33Google Scholar
  43. Nakamura Y (2000) Clear identification of fundamental idea of Nakamura’s technique and its applications. In: Proceedings of the 12th World conference on earthquake engineering, AucklandGoogle Scholar
  44. Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (part 2). J Seismol Soc Japan 24:26–40 (in Japanese with English abstract)Google Scholar
  45. Ohrnberger M, Vollmer D, Scherbaum F (2006) WARAN—a mobile wireless array analysis system for in-field ambient vibration disersion curve estimation. In: First European conference on earthquake engineering and seismology, Geneva, paper 2017, p 284.
  46. Okada H (2003) The microtremor survey method, Geophysical Monograph Series, vol 12. Society of Exploration GeophysicistsGoogle Scholar
  47. Panou AA, Theodulidis N, Hatzidimitriou P, Stylianidis K, Papazachos CB (2005a) Ambient noise horizontal-to-vertical spectral ratio in site effects estimation and correlation with seismic damage distribution in urban environment: the case of the city of Thessaloniki (Northern Greece). Soil Dyn Earthqu Eng 25(4):261–274. doi: 10.1016/j.soildyn.2005.02.004 CrossRefGoogle Scholar
  48. Panou AA, Theodulidis NP, Hatzidimitriou PM, Savvaidis AS, Papazachos CB (2005b) Reliability of ambient noise horizontal-to-vertical spectral ratio in urban environments: the case of Thessaloniki City (Northern Greece). Pure Appl Geophys 162:891–912. doi: 10.1007/s00024-004-2647-6 CrossRefGoogle Scholar
  49. Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32:L01,303. doi: 10.1029/2004GL021115 CrossRefGoogle Scholar
  50. Picozzi M, Albarello D (2007) Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves. Geophys J Int 169:189–200. doi: 10.1111/j.1365-246X.2006.03282.x CrossRefGoogle Scholar
  51. Picozzi M, Sabetta F, Theodulidis N, Zacharopoulos S, Savvaidis A, Bard PY, Cornou C, Gueguen P, Fäh D, Kalogeras I, Akkar S, Rinaldis D, Tanircan G (2007) Selected sites and available information. Deliverable D1, NERIES-Project JRA4 Task C, EU-FP6 EC project number 026130.
  52. Picozzi M, Strollo A, Parolai S, Durukai E, Özel O, Karabulut S, Zschau J, Erdik M (2009) Site characterization by seismic noise in Istanbul, Turkey. Soil Dyn Earthqu Eng 29(3):469–482. doi: 10.1016/j.soildyn.2008.05.007 CrossRefGoogle Scholar
  53. Poggi V, Fäh D (2010) Estimating Rayleigh wave particle motion from three-component array analysis of ambient vibrations. Geophys J Int 180:251–267. doi: 10.1111/j.1365-246X.2009.04402.x CrossRefGoogle Scholar
  54. Raptakis D, Chavez-Garcia FJ, Makra K, Pitilakis K (2000) Site effects at Euroseistest—I. Determination of the valley structure and confrontation of observations with 1D analysis. Soil Dyn Earthqu Eng 19:1–22CrossRefGoogle Scholar
  55. Renalier F, Jongmans D, Savvaidis A, Wathelet M, Endrun B, Cornou C (2010) Influence of parameterisation on inversion of surface wave dispersion curves and definition of an inversion strategy for sites with a strong Vs contrast. Geophysics (submitted)Google Scholar
  56. Satoh T, Kawase H, Iwata T, Higashi S, Sato T, Irikura K, Huang HC (2001) S-wave velocity structure of the Taichung basin, Taiwan, estimated from array and single-station records of microtremors. Bull Seismol Soc Am 91(5):1267–1282CrossRefGoogle Scholar
  57. Scherbaum F, Hinzen KG, Ohrnberger M (2003) Determination of shallow shear wave velocity profiles in the Cologne, Germany area using ambient vibrations. Geophys J Int 152:597–612CrossRefGoogle Scholar
  58. SESAME (2002) Report on the array data set for different sites—WP05 instrumental layout for array measurements. Deliverable D06.05, University of Potsdam, Germany.
  59. SESAME (2005a) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibration measurements and interpretation. Deliverable D23.12, University of Potsdam.
  60. SESAME (2005b) Recommendations for quality array measurements and processing. Deliverable D24.13, Université de Liège.
  61. Souriau A, Roullé A, Ponsolles C (2007) Site effects in the city of Lourdes, France, from H/V measurements: implications for seismic-risk evaluation. Bull Seismol Soc Am 79(6):2118–2136. doi: 10.1785/0120060224 CrossRefGoogle Scholar
  62. Tokeshi JC, Sugimura Y, Karkee MB (2000) Parametric study on simulated microtremors and its application to interpretation of microtremor records. J Struct Constr Eng AIJ 535:69–78Google Scholar
  63. Tuladhar R, Yamazaki F, Warnitchai P, Saita J (2004) Seismic microzonation of the greater Bangkok area using microtremor observations. Earthquake Eng Struct Dyn 33:211–225. doi: 10.1002/eqe.345 CrossRefGoogle Scholar
  64. van der Baan M (2009) The origin of SH-wave resonance frequencies in sedimentary layers. Geophys J Int 178:1587–1596. doi: 10.1111/j.1365-246X.2009.04245.x CrossRefGoogle Scholar
  65. Wathelet M (2005) Array recordings of ambient vibrations: surface-wave inversion. Phd thesis, Université de Liège, Faculté des Sciences Appliquées.
  66. Wathelet M, Jongmans D, Ohrnberger M, Bonnefoy-Claudet S (2008) Array performance for ambient vibrations on a shallow structure and consequences over vs inversion. J Seismol 12:1–19. doi: 10.1007/s10950-007-9067-x CrossRefGoogle Scholar
  67. Yamanaka H, Takemura M, Ishida H, Niwa M (1994) Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bull Seismol Soc Am 84(6):1831–1841Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of Earth and Environmental SciencesUniversity PotsdamPotsdamGermany

Personalised recommendations