Journal of Seismology

, Volume 14, Issue 2, pp 369–392 | Cite as

Seismicity at the convergent plate boundary offshore Crete, Greece, observed by an amphibian network

Original article

Abstract

We investigate microseismic activity at the convergent plate boundary of the Hellenic subduction zone on- and offshore south-eastern Crete with unprecedented precision using recordings from an amphibian seismic network. The network configuration consisted of up to eight ocean bottom seismometers as well as five temporary short-period and six permanent broadband stations on Crete and surrounding islands. More than 2,500 local and regional events with magnitudes up to ML = 4.5 were recorded during the time period July 2003–June 2004. The magnitude of completeness varies between 1.5 on Crete and adjacent areas and increases to 2.5 in the vicinity of the Strabo trench 100 km south of Crete. Tests with different localization schemes and velocity models showed that the best results were obtained from a probabilistic earthquake localization using a 1-D velocity model and corresponding station corrections obtained by simultaneous inversion. Most of the seismic activity is located offshore of central and eastern Crete and interpreted to be associated with the intracrustal graben system (Ptolemy and Pliny trenches). Furthermore, a significant portion of events represents interplate seismicity along the NNE-ward dipping plate interface. The concentration of seismicity along the Ptolemy and Pliny trenches extends from shallow depths down to the plate interface and indicates active movement. We propose that both trenches form transtensional structures within the Aegean plate. The Aegean continental crust between these two trenches is interpreted as a forearc sliver as it exhibits only low microseismic activity during the observation period and little or no internal deformation. Interplate seismicity between the Aegean and African plates forms a 100-km wide zone along dip from the Strabo trench in the south to the southern shore-line of Crete in the north. The seismicity at the plate contact is randomly distributed and no indications for locked zones were observed. The plate contact below and north of Crete shows no microseismic activity and seems to be decoupled. The crustal seismicity of the Aegean plate in this area is generally confined to the upper 20 km in agreement with the idea of a ductile deformation of the lower crust caused by a rapid return flow of metamorphic rocks that spread out below the forearc. In the region of the Messara half-graben at the south coast of central Crete, a southward dipping seismogenic structure is found that coalesces with the seismicity of the Ptolemy trench at a depth of about 20 km. The accretionary prism south of Crete indicated by the Mediterranean Ridge showed no seismic activity during the observation period and seems to be deforming aseismically.

Keywords

Hellenic subduction zone Microseismicity Forearc sliver Crete Amphibian seismic network Return flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelier J, Lyberis N, LePichon X, Barrier E, Huchon P (1982) The tectonic development of the Hellenic arc and the sea of Crete. Tectonophysics 86:159–196CrossRefGoogle Scholar
  2. Armijo RH, Lyon-Caen H, Papanastassiou D (1992) East-west extension and Holocene normal-fault scarps in the Hellenic arc. Geology 20:491–494CrossRefGoogle Scholar
  3. Becker D (2000) Mikroseismizität und Deformation der Kruste Ostkretas. Diploma thesis (in German)Google Scholar
  4. Becker D, Meier T, Rische M, Bohnhoff M, Harjes H-P (2006) Spatio-temporal microseismicity clustering in the Cretan region. Tectonophysics 423:3–16CrossRefGoogle Scholar
  5. Bohnhoff M, Makris J, Stavrakakis G, Papanikolaou D (2001) Crustal investigation of the Hellenic subduction zone using wide aperture seismic data. Tectonophysics 343:239–262CrossRefGoogle Scholar
  6. Bohnhoff M, Meier T, Harjes HP (2005) Stress regime at the Hellenic Arc from focal mechanisms. J Seismol 9:341–366CrossRefGoogle Scholar
  7. Brönner M (2003) Untersuchung des Krustenaufbaus entlang des Mediterranen Rückens abgeleitet aus geophysikalischen Messungen. PhD thesis, Universität Hamburg (in German)Google Scholar
  8. Casten U, Snopek K (2006) Gravity modelling of the Hellenic subduction zone—a regional study. Tectonophysics 417:183–200CrossRefGoogle Scholar
  9. Cifci G, Limonov A, Dimitrov L, Gaianov V (1997) Mud volcanoes and dome-like structures at the Eastern Mediterranean Ridge. Mar Geophys Res 19:421–438CrossRefGoogle Scholar
  10. de Chabalier JB, Lyon-Caen H, Zollo A, Deschamps A, Bernard P, Hatzfeld D (1992) A detailed analysis of microearthquakes in western Crete from digital three-component seismograms. Geophys J Int 110:347–360CrossRefGoogle Scholar
  11. Delibasis N, Ziazias M, Voulgaris N, Papadopoulos T, Stavrakakis G, Papanastassiou D, Drakatos G (1999) Microseismic activity and seismotectonics of the Heraklion area (central Crete Island, Greece). Tectonophysics 308:237–248CrossRefGoogle Scholar
  12. Dercourt J, Zonenshain LP, Ricou L-E, Kazmin VG, LePichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet J-C, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since Lias. Tectonophysics 123:241–315CrossRefGoogle Scholar
  13. Endrun B, Meier T, Bischoff M, Harjes H-P (2004) Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities. Geophys J Int 158:592–608CrossRefGoogle Scholar
  14. Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722–743Google Scholar
  15. Facenna C, Jolivet L, Piromallo C, Morelli A (2003) Subduction and the depth of convection in the Mediterranean mantle. J Geophys Res 108(B2):2099. doi:10.1029/2001JB0011690 CrossRefGoogle Scholar
  16. Galindo-Zaldivar J, Nieto L , Woodside J (1996) Structural features of mud volcanoes and the fold system of the Mediterranean Ridge, South of Crete. Mar Geol 132:95–112CrossRefGoogle Scholar
  17. Gealey WK (1998) Plate tectonic evolution of the Mediterranean-Middle East region. Tectonophysics 155:285–306CrossRefGoogle Scholar
  18. Gerya TV, Stöckhert B (2006) 2-D numerical modeling of tectonic and metamorphic histories at active continental margins. Int J Earth Sci 95:250–274CrossRefGoogle Scholar
  19. Gerya TV, Stöckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel—a numerical simulation. Tectonics 21:6–1–6–19CrossRefGoogle Scholar
  20. Hanka W, Kind R (1994) The GEOFON program. Ann Geophys 33:1060–1065Google Scholar
  21. Hatzfeld D, Besnard M, Makropoulos K, Hatzdimitriou P (1993) Microearthquake seismicity and fault-plane solutions in the southern Aegean and its geodynamic implications. Geophys J Int 115:799–818CrossRefGoogle Scholar
  22. Huchon P, Lyberis N, Angelier J, LePichon X, Renard V (1982) Tectonics of the Hellenic Trench: a synthesis of Sea-Beam and submersible observations. Tectonophysics 86:69–112CrossRefGoogle Scholar
  23. Huguen C, Mascle J, Chaumillon E, Woodside JM, Benkhelil J, Kopf A, Volksonkaia A (2001) Deformation styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling. Tectonophysics 343:21–47CrossRefGoogle Scholar
  24. Kahle H-G, Cochard M, Peter Y, Geiger A, Reilinger R, Barka A, Veis G (2000) GPS-derived strain rate field within the boundary zones of the Eurasian, African and Arabian Plates. J Geophys Res 105:23353–23370CrossRefGoogle Scholar
  25. Kiratzi AA, Papazachos BC (1984) Magnitude scales for earthquakes in Greece. Bull Seismol Soc Am 74:969–985Google Scholar
  26. Kissling E, Ellsworth W, Eberhart-Phillips D, Kradolfer U (1994) Initial reference models in local earthquake tomography. J Geophys Res 99:19635–19646CrossRefGoogle Scholar
  27. Klein FW (2002) User’s guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes. Technical report 02-171, US Dep Int, Geological SurveyGoogle Scholar
  28. Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40(2):1005. doi:10.1029/2000RG000093 CrossRefGoogle Scholar
  29. Kovachev SA, Kuzin IP, Soloviev SL (1991) Spatial distribution of microearthquakes in the frontal part of the Hellenic arc according to observations of bottom seismographs. Geotektonika 25:155–160Google Scholar
  30. Kovachev SA, Kuzin IP, Soloviev SL (1992) Microseismicity of the frontal Hellenic arc according to OBS observations. Tectonophysics 201:317–327CrossRefGoogle Scholar
  31. Laigle M, Sachpazi M, Hirn A (2004) Variation of seismic coupling with slab detachment and upper plate structure along the western Hellenic subduction zone. Tectonophysics 391:85–95CrossRefGoogle Scholar
  32. Lallemant S, Truffert C, Jolivet L, Henry P, Chamot-Rooke N, de Voogd B (1994) Spatial transition from compression to extension in the Western Mediterranean Ridge accrettionary complex. Tectonophysics 234:33–52CrossRefGoogle Scholar
  33. Lomax A, Virieux J, Volant P, Berge-Thierry C (2000) Probabilistic earthquake location in 3D and layered models. In: Thurber CH, Rabinowitz N (eds) Advances in seismic event location. Kluwer Academic, Dordrecht, NetherlandsGoogle Scholar
  34. Makropoulos KC, Burton PW (1984) Greek tectonics and seismicity. Tectonophysics 106:275–304CrossRefGoogle Scholar
  35. Mascle J, Huguen C, Benkhelil J, Chamot-Rooke N, Chaumillon E, Foucher JP, Griboulard R, Kopf A, Lamarche G, Volkonskaia A, Woodside J, Zitter T (1999) Images may show start of European-African plate collision. EOS 80(37):421,425,428CrossRefGoogle Scholar
  36. McClusky S, Ballassanian S, Barka A, Demir C, Ergintav S, Georgiev I, Gurkan O, Hamburger M, Hurst K, Kahle H, Kastens K, Kekelidze G, King R, Kotzev V, Lenk O, Mahmoud S, Mishin A, Nadariya M, Ouzounis A, Paradissis D, Peter Y, Prilepin M, Reilinger R, Sanli I, Seeger H, Tealeb A, Toksöz MN, Veis G (2000) Global positionng system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J Geophys Res 105:5695–5719Google Scholar
  37. Meier T, Rische M, Endrun B, Vafidis A, Harjes H-P (2004a) Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks. Tectonophysics 383:149–169CrossRefGoogle Scholar
  38. Meier T, Dietrich K, Stöckhert B, Harjes H-P (2004b) One dimensional models for shear wave velocity for the Eastern Mediterranean obtained from the inversion of Reighley wave phase velocities and tectonic implications. Geophys J Int 156:45–58. doi:10.1111/j.1365-246X.2004.92121.x CrossRefGoogle Scholar
  39. Meier T, Becker D, Endrun B, Rische M, Bohnhoff M, Stöckhert B, Harjes H-P (2007) A model for the Hellenic subduction zone in the area of Crete based on seosmological investigations. In: Taymaz T, Yilmaz Y, Dilek Y (eds) The geodynamics of the Aegean and Anatalia, vol 291. Geological Society, London, Special Publications, pp 183–199Google Scholar
  40. Meulenkamp JE, van der Zwaan GJ, van Wamel WA (1994) On late miocene to recent vertical motions in the Cretan segment of the Hellenic arc. Tectonophysics 234:53–72CrossRefGoogle Scholar
  41. Monaco C, Tortorici L (2004) Faulting and effects of earthquakes on Minoan archological sites in Crete (Greece). Tectonophysics 382:103–116CrossRefGoogle Scholar
  42. Papazachos BC (1996) Large seismic faults in the Hellenic arc. Ann Geophys 39:891–903Google Scholar
  43. Papazachos BC, Comninakis PE (1971) Geophysical and tectonic features of the Aegean arc. J Geophys Res 76:8517–853CrossRefGoogle Scholar
  44. Papazachos BC, Papazachou C (1997) The earthquakes of Greece. Ziti, Thessaloniki, GreeceGoogle Scholar
  45. Papazachos CB, Nolet G (1997) P and S deep velocity structure of the Hellenic area obtained by robust nonlinear inversion of travel times. J Geophys Res 102:8349–8367CrossRefGoogle Scholar
  46. Papazachos BC, Papaioannou CA, Papazachos CB, Savvaidis AS (1999) Rupture zones in the Aegean region. Tectonophysics 308:205–221CrossRefGoogle Scholar
  47. Papazachos BC, Comninakis PE, Karakaisis BG, Karakostas BG, Papaioannou CA, Papazachos CB, Scordilis EM (2000a) A catalog of earthquakes in Greece and surrounding area for the period 550BC–1999. Geophysics Laboratory, University of ThessalonikiGoogle Scholar
  48. Papazachos BC, Karakostas VG, Papazachos CB, Scordilis EM (2000b) The geometry of the Wadati-Benioff zone and the lithospheric kinematics in the Hellenic arc. Tectonophysics 319:275–300CrossRefGoogle Scholar
  49. Le Pichon X, Lyberis N, Angelier J, Renard V (1982) Strain distribution over the east Mediterranean Ridge: a synthesis incorporating new sea-beam data. Tectonophysics 86:243–274CrossRefGoogle Scholar
  50. Le Pichon X, Chamot-Rooke N, Lallement S, Noomen R, Veis G (1995) Geodetic determination of the kinematics of central Greece with respect to Europe: implications for the eastern Mediterranean tectonics. J Geophys Res 100:12675–12690Google Scholar
  51. Pirazzoli PA (1996) Uplift of ancient Greek coastal sites: study methods and results. In: Stiros S, Jones RE (eds) Archaeoseismology. Athens, Greece, pp 237–244Google Scholar
  52. Ring U, Borchert TC (2003) Discussion on incipient continental collision and plate-boundary curvature: Late Pliocene-Holocene transtensional Hellenic forearc, Crete, Greece. J Geol Sci 160:819–824CrossRefGoogle Scholar
  53. Robinson EA (1967) Statistical communication and detection with special reference to digital data processing of radar and seismic signals. Charles Griffin and Company, LondonGoogle Scholar
  54. Shaw B, Ambraseys NN, England PC, Floyd MA, Gorman GJ, Highman TFG, Jackson JA, Nocquet J-M, Pain CC, Piggott MD (2008) Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nat Geosci 1:268–276CrossRefGoogle Scholar
  55. Spakman W, van der Lee S, van der Hilst R (1993) Travel-time tomography of the European-Mediterranean mantle down to 1400 km. Phys Earth Planet Inter 79:3–74CrossRefGoogle Scholar
  56. Stiros SC (2001) The AD 365 Crete earthquake and possible seismic clustering during the fourth to sixth centuries AD in the Eastern Mediterranean: a review of historical and archaeological data. J Struct Geol 23:545–562CrossRefGoogle Scholar
  57. ten Veen JH, Kleinspehn KL (2003) Incipient continental collision and plate-boundary curvature: late Pliocene-Holocene transtensional Hellenic forearc. J Geol Soc 160:161–181CrossRefGoogle Scholar
  58. ten Veen JH, Meijer PT (1998) Late Miocene to recent tectonic evolution of Crete (Greece): geological observations and model analysis. Tectonophysics 298:191–208CrossRefGoogle Scholar
  59. Thomson SN, Stöckhert B, Brix MR (1998) Thermochronology of the high-pressure metamorphic rocks of Crete, Greece: implications for the speed of tectonic processes. Geology 26:259–262CrossRefGoogle Scholar
  60. Wiemer S (2001) A software package to analyze seismicity: ZMAW. Seis Res Lett 72:373–382Google Scholar
  61. Wyss M (2001) Locked and creeping patches of the Hayward fault, California. Geophys Res Lett 28:3537–3540CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • D. Becker
    • 1
  • T. Meier
    • 2
  • M. Bohnhoff
    • 3
  • H.-P. Harjes
    • 2
  1. 1.Institute of GeophysicsHamburg UniversityHamburgGermany
  2. 2.Institute of Geology, Mineralogy and GeophysicsRuhr University BochumBochumGermany
  3. 3.GeoForschungsZentrum PotsdamPotsdamGermany

Personalised recommendations