Journal of Seismology

, 13:479 | Cite as

Broadband frequency-dependent amplification of seismic waves across Bucharest, Romania

  • Henriette SudhausEmail author
  • Joachim Ritter
Original article


The determination of seismic amplitude amplification is a fundamental contribution to seismic hazard assessment. While often only high-frequency amplitude variations (>1 Hz) are taken into account, we analyse broadband waveforms from 0.14 to 8.6 Hz using a temporary network of 32 stations in and around the earthquake-prone city of Bucharest. Spectral amplitudes are calculated with an adaptive multiple-taper approach. Across our network (aperture 25 km × 25 km), we find a systematic northwest/southeast-oriented structural influence on teleseismic P-wave amplitudes from 0.14 to 0.86 Hz that can be explained by constructive interference in the dipping Cenozoic sedimentary layers. For higher frequencies (1.4–8.75 Hz), more local site effects prevail and can be correlated partly among neighbouring stations. The transition between systematic and localised amplitude variations occurs at about 1 Hz.


Site effects Seismic amplification Frequency-dependent amplification Spectral ratios Multiple taper Bucharest Vrancea 


  1. Aldea A, Lungu D, Arion C (2004) GIS mapping of seismic microzonation and site effects in Bucharest based on existing seismic and geophysical evidence. In: Lungu D, Wenzel F, Mouroux P, Tojo I (eds) Earthquake loss estimation and risk reduction 1, vol 1. Independent Film, Bucharest, pp 237–249Google Scholar
  2. Atanasiu I (1959) Cutremurele de Pamint din Romania. Editura Academiei Republicii Populare Romine, Bucuresti, 195 ppGoogle Scholar
  3. Bala A, Raileanu V, Mandrescu N, Zihan I, Dananau E (2005) Physical properties of the Quaternary sedimentary rocks in the eastern Bucharest area. Rom Rep Phys 57:151–163Google Scholar
  4. Bartlakowski J, Wenzel F, Radulian M, Ritter JRR, Wirth W (2006) Urban shakemap methodology for Bucharest. Geophys Res Lett 33:L14310. doi:10.1029/2006GL026283 CrossRefGoogle Scholar
  5. Cioflan CO, Apostol BF, Moldoveanu CL, Panza GF, Marmureanu Gh (2004) Deterministic approach for the seismic microzonation of Bucharest. Pure Appl Geophys 161:1149–1164. doi:10.1007/s00024-2496-8 CrossRefGoogle Scholar
  6. Flatté SM, Wu RS (1988) Small-scale structure in the lithosphere and asthenosphere deduced from arrival time and amplitude fluctuations at NORSAR. J Geophys Res 93:6601–6614. doi:10.1029/JB093iB06p06601 CrossRefGoogle Scholar
  7. Georgescu ES (2004) The partial collapse of Coltzea tower during the Vrancea earthquake of 14/26 October 1802: the historic warning of long-period ground motions site effect in Bucharest. In: Lungu D, Wenzel F, Mouroux P, Tojo I (eds) Earthquake loss estimation and risk reduction 2, vol 2. Independent Film, Bucharest, pp 331–340Google Scholar
  8. Hauser F, Raileanu V, Fielitz W, Bala A, Prodehl C, Polonic G et al (2001) VRANCEA99—the crustal structure beneath the southeastern Carpathians and the Moesian platform from a refraction seismic profile in Romania. Tectonophysics 340:233–256. doi:10.1016/S0040-1951(01)00195-0 CrossRefGoogle Scholar
  9. Hauser F, Prodehl C, Landes M, VRANCEA working group (2002) Seismic experiments target earthquake-prone region in Romania. Eos Trans AGU 83:457–463. doi:10.1029/2002EO000323 CrossRefGoogle Scholar
  10. Hock S, Korn M, Ritter JRR, Rothert E (2004) Mapping random lithospheric heterogeneities from the Baltic Shield to the Massif Central, France. Geophys J Int 157:251–264. doi:10.1111/j.1365-246X.2004.02191.x CrossRefGoogle Scholar
  11. Lungu D, Scherer R, Zohar M, Coman O (1994) On the phenomenon of long predominant periods of ground vibration during the 1990, 1986, and 1977 earthquake records from Vrancea source. In: Savidis SA (ed) Earthquake resistant construction and design. AA Balkema, Rotterdam, pp 51–59Google Scholar
  12. Lungu D, Aldea A, Cornea T (1999a) Dynamic characteristics of the existing building stock of Romania. In: Fryba L, Naprstek J (eds) Structural dynamics. AA Balkema, Rotterdam, pp 897–902Google Scholar
  13. Lungu D, Cornea T, Nedelcu C (1999b) Hazard assessment and site-dependent response for Vrancea earthquakes. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 251–267Google Scholar
  14. Lungu D, Demetriu S, Arion C (1999c) Seismic vulnerability of buildings exposed to Vrancea earthquakes in Romania. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 215–224Google Scholar
  15. Mândrescu N, Radulian M (1999) Macroseismic field of the Romanian intermediate-depth earthquakes. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 163–174Google Scholar
  16. Mândrescu N, Radulian M, Marmureanu Gh (2004) Site conditions and predominant period on seismic motion in the Bucharest urban area. Rev Roum Geophys 48:37–48Google Scholar
  17. Mândrescu N, Radulian M, Marmureanu Gh (2007) Geological, geophysical and seismological criteria for local response evaluation in Bucharest urban area. Soil Dyn Earthqu Eng 27:367–393. doi:10.1016/j.soildyn.2006.06.010 CrossRefGoogle Scholar
  18. Moldoveanu CL, Radulian M, Marmureanu Gh, Panza GF (2004) Microzonation of Bucharest: state-of-the-art. Pure Appl Geophys 161:1125–1147. doi:10.1007/s00024-003-2499-5 CrossRefGoogle Scholar
  19. Musson RMW (1999) Probabilistic seismic hazard maps for the North Balkan region. Ann Geofis 42:1109–1124Google Scholar
  20. Oncescu MC, Marza VI, Rizescu M, Popa M (1999) The Romanian earthquake catalogue between 984–1997. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 43–47Google Scholar
  21. Park J, Lindberg CR, Vernon FL III (1987) Multitaper spectral analysis of high-frequency seismograms. J Geophys Res 92:12675–12684. doi:10.1029/JB092iB12p12675 CrossRefGoogle Scholar
  22. Percival DB, Walden AT (1993) Spectral analysis for physical applications: multitaper and conventional univariate techniques. Cambridge University Press, New YorkGoogle Scholar
  23. Radu C (1974) Contribution a l’etude de la seismicite de la Roumanie et comparaison avec la seismicite de sud-est de la France. PhD thesis, Universite de Strasbourg, 404 ppGoogle Scholar
  24. Raileanu V, Bala A, Hauser F, Prodehl C, Fielitz W (2005) Crustal properties from S-wave and gravity data along a seismic refraction profile in Romania. Tectonophysics 410:251–272. doi:10.1016/j.tecto.2004.09.014 CrossRefGoogle Scholar
  25. Ritter JRR, Balan SF, Bonjer K-P, Diehl T, Forbriger T, Marmureanu G et al (2005) Broadband urban seismology in the Bucharest metropolitan area. Seismol Res Lett 76:574–580CrossRefGoogle Scholar
  26. Sheriff RR, Geldart LP (1982) Exploration seismology 1—history, theory & data acquisition. Cambridge University Press, CambridgeGoogle Scholar
  27. Slepian D (1978) Prolate spheriodal wave functions, Fourier analysis, and uncertainty—V: the discrete case. Bell Syst Tech J 57:1371–1429Google Scholar
  28. Sokolov V, Bonjer K-P, Wenzel F (2004) Accounting for site effect in probabilistic assessment of seismic hazard for Romania and Bucharest: a case of deep seismicity in Vrancea zone. Soil Dyn Earthqu Eng 24:929–947. doi:10.1016/j.soildyn.2004.06.021 CrossRefGoogle Scholar
  29. Stammler K (1993) SeismicHandler—programmable multichannel data handler for interactive and automatic processing of seismological analyses. Comput Geosci 19:135–140. doi:10.1016/0098-3004(93)90110-Q CrossRefGoogle Scholar
  30. Weber M (1994) Traveltime and amplitude anomalies at the seismic broadband array GRF. Geophys J Int 118:57–74. doi:10.1111/j.1365-246X.1994.tb04675.x CrossRefGoogle Scholar
  31. Wenzel F, Lungu D, Novak O (1999a) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, DordrechtGoogle Scholar
  32. Wenzel F, Lorenz FP, Sperner B, Oncescu MC (1999b) Seismotectonics of the Romanian Vrancea area. In: Wenzel F, Lungu D, Novak O (eds) Vrancea earthquakes: tectonics, hazard and risk mitigation. Kluwer, Dordrecht, pp 15–25Google Scholar
  33. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos Trans AGU 79:579. doi:10.1029/98EO00426 CrossRefGoogle Scholar
  34. Wirth W, Wenzel F, Sokolov VY, Bonjer K-P (2003) A uniform approach to seismic site effect analysis in Bucharest, Romania. Soil Dyn Earthqu Eng 23:737–758. doi:10.1016/S0267-7261(03)00073-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of GeophysicsETH ZurichZurichSwitzerland
  2. 2.Geophysical InstituteUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations