Journal of Seismology

, 13:161 | Cite as

Evidence for Quaternary liquefaction-induced features in the epicentral area of the 21 May 2003 Zemmouri earthquake (Algeria, M w = 6.8)

  • Y. BouhadadEmail author
  • A. Benhamouche
  • S. Maouche
  • D. Belhai
Original article


Evidence of ancient liquefaction-in duced features is presented in the area of the 2003 Zemmouri earthquake (M w 6.8). This earthquake was related to an offshore unknown 50-km long fault. A 0.55-m coseismic coastal uplift was generated and extensive liquefaction has been induced in the most susceptible area which correspond to the seaside and along the hydrographic network, mainly the Sebaou and Isser valley rivers. Field investigations allowed us to identify past liquefaction traces in the Quaternary deposits. The observed features are represented by sand dikes, sills, and sand vents as well as well-preserved sand boiled volcanoes. In this work, we also describe the alluvial environment, the hosted localized stratigraphic layer, the morphology and the geometry of the observed features, as well as the observed deformation (settlement) of the hosted layers that are among characteristics of the seismically induced features as described in worldwide examples. Our observations represent a step towards paleoseismological studies in the region knowing that the May 21st 2003 Zemmouri earthquake is produced by an offshore fault where a direct study of the seismogenic fault is inaccessible.


Algeria Paleoliquefaction Sand dikes Quaternary deposits Earthquake Paleoseismic perspectives 


  1. Alfaro P, Delgano J, Estevez A, Lopez-Casado C (2001) Paleoliquefaction in the Bajo Segura basin (Eastern Betic Cordillera). Acta Geologica Hispanica 36 (3–4):233–244Google Scholar
  2. Ambraseys NN (1988) Engineering seismology. Earthquake Eng Struct Dynam 17:1–105. doi:10.1002/eqe.4290170101 CrossRefGoogle Scholar
  3. Bezerra FHR, Da fonseca VP, C Vita-Finzi C, Lima-Filho FP, Saadi A (2005) Liquefaction-induced structures in Quaternary alluvial gravels and gravely sediments, NE Brazil. Eng Geol 76:191–208. doi:10.1016/j.enggeo.2004.07.007 CrossRefGoogle Scholar
  4. Bellabes S, Wicks C, Cakir Z, Meghraoui M (submitted) Rupture parameters of the 21 May 2003, Mw = 6.8, Zemmouri (Northern Algeria) earthquake deduced from InSAR. J Geophys ResGoogle Scholar
  5. Benouar D (1994) 1994, Material for the investigation of the seismicity of Algeria and adjacent region during the twentieth century. Ann Geofis 38(4):860Google Scholar
  6. Bounif A, Dorbath C, Ayadi A, Meghraoui M, Beldjoudi H, Laouami N, Frogneux M, Slimani A, Alasset PJ, Kharroubi A, Oussadou F, Chikh M, Harbi A, Larbes S, Maouche S (2004) The May 2003 Zemmouri (Algeria) earthquake Mw = 6.8: relocation and aftershock sequence analysis. Geophys Res Lett 31:L19605CrossRefGoogle Scholar
  7. Bouhadad Y, Nour A, Slimani A, Laouami N, Belhai D (2004) The Boumerdes (Algeria) earthquake of May 21, 2003 Mw = 6.8: ground deformation and intensity. J Seismol 8:497–506. doi:10.1007/s10950-004-4838-0 CrossRefGoogle Scholar
  8. Collinson J (1994) Sedimentary deformational structures. In: Maltman A (ed) The geological deformation of sediments, pp 95–125Google Scholar
  9. De Mets C, Gordon RC, Argus DF, Stein S (1990) Current plate motion. Geophys J Int 101:425–478. doi:10.1111/j.1365-246X.1990.tb06579.x CrossRefGoogle Scholar
  10. Delouis B, Vallée M, Meghraoui M, Calais E, Maouche S, Lammali K, Mahsas A, Briole P, Benhamouda F, Yelles K, (2004) Slip distribution of the 2003 Boumerdes-Zemmouri, Algeria, from teleseismic, GPS and Coastal Uplift data. Geophys Res Lett 31:L18607CrossRefGoogle Scholar
  11. Déverchère J, Yelles K, Domzig A, Mercier de Lepinay B, Bouillin JP, Gaulier V et al (2005) Active thrust faulting offshore, Boumerdes, Algeria, and its relations to the 2003 Mw = 6.9 earthquake. Geophys Res Lett 32:L04311. doi:10.1029/2004GL021646 CrossRefGoogle Scholar
  12. Estevez A, Soria JM, Alfaro P (1994) Un nouveau type de seismites dans le Miocène supérieure d’alicante (Cordière bétique orientale, Espagne): les coins détritiques. C.R. Acad. Sci. Paris, 318, série II, 507–512Google Scholar
  13. Green RA, Obermeier FS, Olso SM (2005) Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: field examples. Eng Geol 76:263–293. doi:10.1016/j.enggeo.2004.07.026 CrossRefGoogle Scholar
  14. Harbi A (2001) Analyse de la sismicité et mise en évidence d’accidents actifs dans le Nord-Est Algérien., Thèse de Magistère, USTHB, 189 ppGoogle Scholar
  15. International Society for Soil Mechanics and Foundation Engineering (ISSMFE) (1993) Manual for Zonation on Seismic Geotechnical Hazards, TC4Google Scholar
  16. Machane D, Bouhadad Y, Oubaiche EH, Hellel M, Amrouche F, Abbès K, Messaoudi M, Cheikhlounis G (2004) Description morphologique des effets induits par le séisme de Boumerdes (Algérie) du 21 Mai 2003 (Mw = 6.8). Mémoires du Service Géologique d’Algérie 12:133–146Google Scholar
  17. Mansouri M (1990) Approche de cartographie géotechnique de la région de Boumerdes, Mémoire d’ingénieur, USTHBGoogle Scholar
  18. Meghraoui M (1988) Géologie des zones sismiques du Nord de l’Algérie: paléosismologie, tectonique active et synthèse sismotectonique. Thèse doct. Univ. Paris VI, pp.356, FranceGoogle Scholar
  19. Meghraoui M, Crone AJ (2001) Earthquakes and their preservation in the geological records. J Seismol 5:281–285. doi:10.1023/A:1011413822532 CrossRefGoogle Scholar
  20. Meghraoui M, Doumaz F (1996) Earthquake-induced flooding and paleoseismicity of the El Asnam (Algeria) fault-related fold. J Geophys Res 101:17617–17644. doi:10.1029/96JB00650 CrossRefGoogle Scholar
  21. Meghraoui M, Philip H, Albarede F, Cisternas A (1988) Trench investigations through the trace of the 1980 El-Asnam thrust fault: evidence for paleoseismicity. Bull Seismol Soc Am 78(2):979–999Google Scholar
  22. Meghraoui M, Maouche S, Chemaa B, Cakir Z, Aoudia A, Harbi A, Alasset PJ, Bouhadad Y, Benhamouda F (2004) Coastal uplift and thrust faulting associated with the (Mw = 6.8) Zemmouri (Algeria) earthquake of 21 May, 2003. Geophys Res Lett 31:L19605.CrossRefGoogle Scholar
  23. Mokrane A, Ait Messaoud A, Sebai A, Menia N, Ayadi A, Bezzeghoud M (1994) Les séismes en Algérie de 1365–1992, CRAAG, Alger, Supervised by Bezzeghoud, M. and Benhallou, H., pp. 227Google Scholar
  24. Munson PJ, Munson CA, Pond EC (1995) Paleoliquefaction evidence for a strong Holocene earthquake in south-central Indiana. Geology 23(4):325–328. doi:10.1130/0091-7613(1995)023<0325:PEFASH>2.3.CO;2 CrossRefGoogle Scholar
  25. Nocquet JM, Calais E (2004) Geodetic measurements of crustal deformation in the western Mediterranean and Europe. Pure Appl Geopys 161:661–681CrossRefGoogle Scholar
  26. Obermeier SF (1996) Use of paleoliquefaction-induced features for paleoseismic analysis. An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleoearthquakes. Eng Geol 44:1–76. doi:10.1016/S0013-7952(96)00040-3 CrossRefGoogle Scholar
  27. Obermeier SF (1998) Seismic liquefaction features — examples from paleoseismic liquefaction studies in the continental United States. Open-file Rep (US Geol Surv) 98–488Google Scholar
  28. Obermeier SF, Olson SM, Green RA (2005) Field occurrence of liquefaction induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng Geol 76:204–234Google Scholar
  29. Olson SM, Green RA, Obermeier SF (2005) Geotechnical analysis of paleoseismic shaking using liquefaction features: a major updating. Eng Geol 76:235–261. doi:10.1016/j.enggeo.2004.07.008 CrossRefGoogle Scholar
  30. Philip H, Meghraoui M (1983) Structural analysis and interpretation of the surface deformation of the El-Asnam earthquake of October 10, 1980. Tectonics 2(1):17–49. doi:10.1029/TC002i001p00017 CrossRefGoogle Scholar
  31. Plaziat JC, Ahmamou M (1998) Les différents mécanismes à l’origine de la diversité des séismites, leur identification dans le pliocène du Saiss de Fès et de Meknès (Maroc) et leur signification tectonique. Geodinamica Acta Paris 11(4):183–203. doi:10.1016/S0985-3111(98)80004-1 CrossRefGoogle Scholar
  32. Plaziat JC, Purser BH, Philobbos ER (1990) Seismic deformation structures (seismites) in the syn-rift sediments of the NW Red Sea (Egypt). Bull Soc Geol Fr 4(8):419–434Google Scholar
  33. Rijsdijk KF, Owen G, Warren WP, McCarrol D, Van Der Meer JJM (1999) Clastic dikes in over-consolidated tills: evidence for subglacial hydrofracturing at Killing Bay, Eastern Ireland. Sediment Geol 129:111–126. doi:10.1016/S0037-0738(99)00093-7 CrossRefGoogle Scholar
  34. Seed HB, Idriss IM (1982) Ground motions and soil liquefaction during earthquakes, El Cerrito, EERI, Monograph Series 5:134Google Scholar
  35. Seed HB, Idriss IM, Arango I (1983) Evaluation of liquefaction potential using field performance data. J Geotech Eng Div ASCE 109(3)Google Scholar
  36. Seilacher A (1969) Fault-graded beds interpreted as séismites. Sedimentology 13:155–159. doi:10.1111/j.1365-3091.1969.tb01125.x CrossRefGoogle Scholar
  37. Semmane F, Campillo M, Cotton F (2005) Fault location and source process of the Boumerdes, Algeria, earthquake inferred from geodetic and strong motion data. Geophys Res Lett 32:L01305. doi:10.1029/2004GL021268 CrossRefGoogle Scholar
  38. Serva L, Slemmons DB (eds) (1995) Perspectives in paleoseismology, Assoc. Eng. Geologists, Spec. Publ 6:139Google Scholar
  39. Talwani P, Schaeffer WT (2001) Recurrence rates of large earthquakes in the South Carolina Coastal Plain based on paleoliquefaction data. J Geophys Res 106(B4):6621–6642. doi:10.1029/2000JB900398 CrossRefGoogle Scholar
  40. Tuttles MP, Prentice CS, Williams KD, Rena LR, Burr G (2003) Late Holocene liquefaction features in the Dominican Republic: a powerful tool for earthquake hazard assessment in Northeastern Caribbean. BSSA 93(1):27–46, 1Google Scholar
  41. Woodward Clyde Consultants (WCC) (1984) Seismic microzonation of Ech-Chellif region, Algeria. Report prepared for C.T.C., Algiers, 1, CTC, Algeria, pp 145Google Scholar
  42. Youd TL, Perkins DM (1978) Mapping liquefaction-induced failure potential. J Geotech Eng Div ASCE 104(GTA):433–446Google Scholar
  43. Youd TL, Perkins DM (1987) Mapping of liquefaction severity index. J Geotech Eng ASCE 113(11):1374–1392CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Y. Bouhadad
    • 1
    Email author
  • A. Benhamouche
    • 1
  • S. Maouche
    • 2
  • D. Belhai
    • 3
  1. 1.National Center of Applied Research in Earthquakes Engineering (CGS)AlgiersAlgeria
  2. 2.CRAAGAlgiersAlgeria
  3. 3.USTHB, FSTGATAlgiersAlgeria

Personalised recommendations