Journal of Seismology

, Volume 12, Issue 1, pp 21–33 | Cite as

Estimation of an upper limit on prehistoric peak ground acceleration using the parameters of intact speleothems in Hungarian caves

  • Győző Szeidovitz
  • Gergely Surányi
  • Katalin Gribovszki
  • Zoltán BusEmail author
  • Szabolcs Leél-Őssy
  • Zsolt Varga
Original Article


The examination of speleothems in the Hajnóczy and Baradla caves (northeastern Hungary) allows estimating an upper limit for horizontal peak ground acceleration generated by paleoearthquakes. The density, the Young’s modulus and the tensile failure stress of the samples originating from a broken speleothem have been measured in a laboratory, whereas the natural frequency of intact speleothems was determined by in situ observations. The value of horizontal ground acceleration resulting in failure, the natural frequency and the inner friction coefficient of speleothems were assessed by theoretical calculations. The ages of the samples taken from a stalagmite 5.1 m in height (Baradla cave) have been determined by inductively coupled plasma mass spectrometry analysis and alpha spectrometry. The measured ages fall between 140,000 and 70,000 years; therefore, we assume the speleothem has not been changed since the end of this time interval. According to our modeling results, this speleothem has not been excited by a horizontal acceleration higher than 0.05 g during the last 70,000 years.


Speleothems Paleoearthquakes Earthquake hazard 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bada G, Horváth F, Gerner P, Fejes I (1999) Review of the present-day geodynamics of the Pannonian basin: progress and problems. J Geodyn 27:501–527CrossRefGoogle Scholar
  2. Becker A, Davenport CA, Eichenberger U, Gilli E, Jeannin P-Y, Lacave C (2006) Speleoseismology: a critical perspective. J Seismol 10:371–388CrossRefGoogle Scholar
  3. Cadorin JF, Jongmans D, Plumier A, Camelbeeck T, Delaby S, Quinif Y (2001) Modelling of speleothems failure in the Hotton cave (Belgium). Is the failure earthquake induced? Netherlands J Geosci 80(3–4):315–321Google Scholar
  4. Crispim JA (1999) Seismotectonic versus man-induced morphological changes in a cave on the Arrabida chain (Portugal). Geodin Acta 12:135–142CrossRefGoogle Scholar
  5. Delaby S (2001) Paleoseismic investigations in Belgian caves. Netherlands J Geosci 80(3-4):323–332Google Scholar
  6. Ferencz E, Péterfalvi Cs (2002) Investigation of earthquake related vibration and breaking of speleothems (in Hungarian). unpublished manuscript, p 17Google Scholar
  7. Forti P, Postpischl D (1984) Seismotectonic and paleoseismic analyses using karst sediments. Mar Geol 55:145–161CrossRefGoogle Scholar
  8. Forti P, Postpischl D (1988) Seismotectonics and radiometric dating of karst sediments. Proc Hist Seismol of Central-eastern Mediterranean Region, ENEA-IAEA Roma, pp 312–322Google Scholar
  9. Gerner P, Bada G, Dövényi P, Müller B, Onescu MC, Cloething SAPL, Horváth F (1999) Recent tectonic stress and crustal deformation in and around the Panonnian basin: data and models. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The Mediterranean basins: Tertiary extension within the Alpine orogen, vol 156. pp 269–294Google Scholar
  10. Horváth F, Bada G, Windhoffer G, Csontos L, Dövényi P, Fodor L, Grenerczy Gy, Síkhegyi F, Szafián P, Székely B, Tímár G, Tóth L, Tóth T (2006) Atlas of the present-day geodynamics of the Pannonian basin: Euroconform maps with explanatory text (in Hungarian with English summary). Magy Geofiz 47(4):133–137Google Scholar
  11. Jakucs L (1952) The Cave of Aggtelek (in Hungarian). Művelt Nép Könyvkiadó, Budapest, p 118Google Scholar
  12. Kagan EJ, Agnon A, Bar-Matthews M, Ayalon A (2005) Dating large infrequent earthquakes by damaged cave deposits. Geology 33(4):261–264CrossRefGoogle Scholar
  13. Kordos L (1984) Caves of Hungary (in Hungarian). Gondolat, Budapest, p 315Google Scholar
  14. Lacave C, Koller MG, Egozcue JJ (2004) What can be concluded about seismic history from broken and unbroken speleothems? J Earthq Eng 8(3):431–455CrossRefGoogle Scholar
  15. Lacave C, Levret A, Koller MG (2000) Measurements of natural frequencies and damping of speleothems. Proc. of the 12th World Conference on Earthquake Engineering, Auckland, New-Zealand, paper 2118Google Scholar
  16. Lauritzen S-E, Leél-Őssy Sz (1999) Preliminary age data of certain speleothems from Baradla Cave (in Hungarian). Karszt és Barlang 1994(I-II):3–8Google Scholar
  17. Lenkey L, Dövényi P, Horváth F, Cloething SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. In: Cloetingh SAPL, Horváth F, Bada G, Lankreijer A (eds) Neotectonics and surface processes: the Pannonian basin and Alpine/Carpathian system, vol 3. European Geosciences Union, St. Mueller Special Publication Series, pp 29–40Google Scholar
  18. Scholz H (1990) The mechanics of the earthquakes and faulting. Cambridge University Press, p 467Google Scholar
  19. Tóth L, Bus Z, Győri E, Mónus P (2007) Seismicity of the Pannonian basin. In: Husebye E, Christova C (eds) Earthquake monitoring and seismic hazard mitigation in Balkan countries. NATO ARW Series, Springer (in press)Google Scholar
  20. Tóth L, Győri E, Mónus P, Zsíros T (2006) Seismic hazard in the Pannonian region. In: Pinter N, Grenerczy Gy, Weber J, Stein S, Medak D (eds) The Adria Microplate: GPS geodesy, tectonics, and hazards, vol 61. NATO ARW Series, Springer, pp 369–384Google Scholar
  21. Tóth L, Mónus P, Zsíros T, Kiszely M (2002) Seismicity in the Pannonian Region - earthquake data. In: Cloetingh SAPL, Horváth F, Bada G, Lankreijer A (eds) Neotectonics and surface processes: the Pannonian basin and Alpine/Carpathian system, vol 3. European Geosciences Union, St. Mueller Special Publication Series, pp 9–28Google Scholar
  22. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans AGU 79:579CrossRefGoogle Scholar
  23. Zsíros T (2000) The seismicity and earthquake hazard of the Pannonian basin: Hungarian Earthquake Catalog (456-1995, in Hungarian). MTA GGKI Szeizmológiai Obszervatórium, p 482Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Győző Szeidovitz
    • 1
  • Gergely Surányi
    • 2
  • Katalin Gribovszki
    • 1
  • Zoltán Bus
    • 1
    Email author
  • Szabolcs Leél-Őssy
    • 3
  • Zsolt Varga
    • 4
  1. 1.Hungarian Academy of Sciences, Geodetic, and Geophysical Research Institute, Seismological ObservatoryBudapestHungary
  2. 2.MTA-ELTE Geological, Geophysical and Space Science Research GroupBudapestHungary
  3. 3.Department of Physical and Historical GeologyELTE University BudapestBudapestHungary
  4. 4.Institute of Isotopes, Department of Radiation SafetyHungarian Academy of SciencesBudapestHungary

Personalised recommendations