Journal of Seismology

, Volume 11, Issue 4, pp 405–414 | Cite as

Shear wave velocity and crustal thickness in the Pannonian Basin from receiver function inversions at four permanent stations in Hungary

Original Article

Abstract

Receiver functions of teleseismic waveforms recorded at four Hungarian permanent broadband stations have been analyzed using semilinearized and stochastic inversion methods to estimate the crustal thickness and S wave velocity structure in the Pannonian Basin. The results of both inversion methods agree well with the crustal thicknesses obtained by previous seismic refraction and reflection studies in the regions which are densely covered with seismic lines (28 and 27 km in westernmost and southern Hungary, respectively) and suggest a thicker crust compared to what was known before beneath the Transdanubian and Northern Ranges (34 and 33 km, respectively). The comparison of the one-dimensional shear wave velocity models derived by the different inversion methods shows that, in case of simple, smoothly varying structures, the results do not differ significantly and can be regarded as absolute velocities. Otherwise, the recovered velocity gradients agree, but there are differences in the absolute velocity values. The back-azimuthal variations of both radial and tangential receiver functions are interpreted as dipping structure and as waves sampling different geological areas. The signature of the deep structure on low-frequency receiver functions suggests a strong velocity contrast at the 670-km discontinuity. The vanishing 410-km boundary may be attributed to the remnant of a subducted oceanic slab with increased Poisson’s ratio in the transition zone.

Keywords

Receiver functions Inversion methods Pannonian Basin Crustal thickness Shear wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ádám A, Landy K, Nagy Z (1989) New evidence for the distribution of the electric conductivity in the Earth’s crust and upper mantle in the Pannonian Basin as a “hotspot”. Tectonophysics 164:361–368CrossRefGoogle Scholar
  2. Ammon CJ, Randall GE, Zandt G (1990) On the nonuniqueness of receiver function inversions. J Geophys Res 95:15303–15318Google Scholar
  3. Bada G, Horváth F, Cloething S, Coblentz D, Tóth T (2001) Role of topography-induced gravitational stresses in basin inversion: the case study of the Pannonian Basin. Tectonics 20(3):343–363CrossRefGoogle Scholar
  4. Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars, part 2. J Geophys Res 66:2199–2224Google Scholar
  5. Bus Z (2003) S-wave velocity structure beneath the Mátra Mountains (Hungary) inferred from teleseismic receiver functions. Acta Geod Geophys Hung 38(1):93–102CrossRefGoogle Scholar
  6. Cammarano F, Goes S, Vacher P, Giardini D (2003) Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter 138(3):197–222CrossRefGoogle Scholar
  7. Grad M, Guterch A, Keller GR, Janik T, Hegedűs E, Vozár J, Ślączka A, Tiira T, Yliniemi J (2006) Lithospheric structure beneath trans-Carpathian transect from Precambrian platform to Pannonian Basin: CELEBRATION 2000 seismic profile CEL05. J Geophys Res 111:B03301CrossRefGoogle Scholar
  8. Hetényi G, Cattin R, Vergne J, Nábĕlek JL (2006) The effective elastic thickness of the India Plate from receiver function imaging, gravity anomalies and thermomechanical modelling. Geophys J Int 167(3):1106–1118CrossRefGoogle Scholar
  9. Heuer B, Kämpf H, Kind R, Geissler WH (2007) Seismic evidence for whole lithosphere separation between Saxothuringian and Moldanubian tectonic units in central Europe. Geophys Res Lett 34:L09304CrossRefGoogle Scholar
  10. Horváth F (1993) Towards a mechanical model for the formation of the Pannonian Basin. Tectonophysics 226:333–357CrossRefGoogle Scholar
  11. Horváth F, Bada G, Windhoffer G, Csontos L, Dövényi P, Fodor L, Grenerczy G, Síkhegyi F, Szafián P, Székely B, Timár G, Tóth L, Tóth T (2005) Atlas of the present-day geodynamics of the Pannonian Basin: Euroconform maps with explanatory text. http://geophysics.elte.hu/projektek/geodinamikai_atlasz_eng.htm
  12. Hrubcová P, Środa P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. J Geophys Res 110:B11305CrossRefGoogle Scholar
  13. Karátson D, Csontos L, Harangi Sz, Székely B, Kovácsvölgyi S (2001) Volcanic successions and the role of destructional events in the Western Mátra Mountains, Hungary: implications for the volcanic structure. Géomorphologie 2:79–92CrossRefGoogle Scholar
  14. Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465CrossRefGoogle Scholar
  15. Langston C (1979) Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J Geophys Res 84:4749–4762CrossRefGoogle Scholar
  16. Ligorría J, Ammon CJ (1999) Iterative deconvolution and receiver-function estimation. Bull Seismol Soc Am 88:1395–1400Google Scholar
  17. Ligorría JP (2000) An investigation of the mantle–crust transition beneath North-America and Poisson’s ratio of the North American Crust. Ph.D. thesis, Saint Louis University – St. Louis, MO, USAGoogle Scholar
  18. Mónus P (1995) Travel time curves and crustal velocity model for the Pannonian basin. Technical Report, MTA GGKI, Budapest, 6 ppGoogle Scholar
  19. Praus O, Pěčová J, Petr V, Babuška V, Plomerová J (1990) Magnetotelluric and seismological determination of the lithosphere-asthenosphere transition in Central Europe. Phys Earth Planet Inter 60:212–228CrossRefGoogle Scholar
  20. Sambridge M (1999) Geophysical inversion with a neighbourhood algorithm – I. Searching the parameter space. Geophys J Int 138:479–494CrossRefGoogle Scholar
  21. Sambridge M (2001) Finding acceptable models in nonlinear inverse problems using a neighbourhood algorithm. Inverse Problems 17:387–403CrossRefGoogle Scholar
  22. Savage MK (1998) Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. J Geophys Res 103:15069–15087CrossRefGoogle Scholar
  23. Środa P, Czuba W, Grad M, Guterch A, Tokarski AK, Janik T, Rauch M, Keller GR, Hegedüs E, Vozár J, CELEBRATION 2000 Working Group (2006) Crustal and upper mantle structure of the Western Carpathians from CELEBRATION 2000 profiles CEL01 and CEL04: seismic models and geological implications. Geophys J Int 167(2):737–760CrossRefGoogle Scholar
  24. Świeczak M, Grad M, TOR and SVEKALAPKO working groups (2004) Upper mantle seismic discontinuities topography variations beneath Eastern Europe. Acta Geophys Pol 52(3):251–270Google Scholar
  25. Tapponnier P (1976) Évolution tectonique du système alpin en Méditerranée: poinçonnement et écrasement rigide-plastique. Bull Soc Géol France XIX(3):437–460Google Scholar
  26. Wessel P, Smith WHF (1991) Free software helps map and display data. EoS Trans. AGU, 72, pp. 441 and 445–446Google Scholar
  27. Wilde-Piórko M, Saul J, Grad M (2005) Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions. Stud Geophys Geod 49(1):85–107CrossRefGoogle Scholar
  28. Wortel MJT, Spakman W (2000) Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290:1910–1917CrossRefGoogle Scholar
  29. Zhu L, Kanamori H (2000) Moho depth variation in southern California from teleseismic receiver functions. J Geophys Res 105:2969–2980CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratoire de GéologieEcole Normale Supérieure, CNRS-UMR 8538ParisFrance
  2. 2.Department of Geophysics, Institute of Geography and Earth SciencesEötvös Loránd UniversityBudapestHungary
  3. 3.Geodetical and Geophysical Research Institute, Seismological ObservatoryHungarian Academy of SciencesBudapestHungary

Personalised recommendations