Journal of Seismology

, Volume 10, Issue 2, pp 197–211 | Cite as

Faulting style and stress field investigations for swarm earthquakes in NE Baveria/Germany – the transition between Vogtland/NW-Bohemia and the KTB-site

  • M. Ibs-von Seht
  • T. Plenefisch
  • E. Schmedes
Article

Abstract

A seismicity and stress field analysis of a region in NE Bavaria reveals a complex picture of seismic dislocation. The magnitudes are generally low, the strongest event recorded had a magnitude of 2.3. In the southern part of the area investigated, earthquakes occur very rarely. During the observation period of approximately four years, only four events, two of them forming a doublet, were recorded. Hypocentral depths in the southern part are considerably great (15 to 17 km) and indicate a mafic lower crust. The seismicity of the Marktredwitz area, located in the western extension of the Eger rift, is dominated by earthquake swarms that are strongly clustered in space and time. The swarms occurred at depths between 10 and 14 km. Precise relative relocations show clear planar arrangements of the hypocentres and enable to identify the orientation of active fault planes. A comparison of the structural and geomorphological settings reveals major similarities in the occurrence of earthquake swarms compared to the situation in the bordering Vogtland/NW-Bohemia swarm area.

Focal mechanisms cover a wide range of faulting styles. Normal fault, strike slip and reverse fault mechanisms as well as movements along sub-horizontal planes were found. The focal mechanisms were used to invert for the stress field. The inversion results reveal an ambiguity for the state of stress in the area of investigation and allow two different interpretations: A clockwise rotation of the stress field from North to South as well as a predominance of two slightly different stress regimes are possibilities.

Keywords

focal mechanisms seismicity stress field swarm earthquakes Vogtland/NW-Bohemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohnhoff, M., Baisch, S. and Harjes, H., 2004. Fault mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field. J. Geophys. Res., 109, B02309, doi:10.1029/2003JB002528.Google Scholar
  2. Brudy, M., Zoback, M.D., Fuchs, K., Rummel F., and Baumgärtner, J., 1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal strength. J. Geophys. Res., 102, No. B8, 453–476.CrossRefGoogle Scholar
  3. Chen, W-P. and Molnar, P., 1983. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. astr. Soc. 88, 4183–4214.CrossRefGoogle Scholar
  4. Dahlheim, H.-A., Gebrande, H., Schmedes E., and Soffel, H., 1997. Seismicity and stress field in the vicinity of the KTB location, J. Geophys. Res. 102, 18493–18506.CrossRefGoogle Scholar
  5. Dahm, T., Horálek, J., and Šíleny, J., 2000. Comparison of absolute and relative moment tensor solutions for the January 1997 West Bohemia earthquake swarm. Studia geoph. et geod., 44, 233–250.CrossRefGoogle Scholar
  6. DEKORP Research Group, 1988. Results of the DEKORP 4/KTB Oberpfalz deep seismic reflection investigations. J. Geophys. 62, 69–101.Google Scholar
  7. Fischer, T. and Horálek, J., 2000. Refined locations of the swarm earthquakes in the Novy Kostel focal zone and spatial distribution of the January 1997 swarm in Western Bohemia, Czech Republic. Studia geoph. et geod., 44, 210–226.CrossRefGoogle Scholar
  8. Fischer, T., 2003. The August–December 2000 earthquake swarm in NW Bohemia: the firsts results based on automatic processing of seismograms. J. of Geodynamics, 35, No. 1–2, 59–82.CrossRefGoogle Scholar
  9. Fischer, T. and Horálek, J., 2003. Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J. of Geodynamics, 35, No. 1–2, 125–144.CrossRefGoogle Scholar
  10. Gebrande, H., Bopp, M., Neurieder, P. and Schmidt, T., 1989. Crustal structure in the surroundings of the KTB drill site as derived from refraction and wide-angle seismic observations, in R. Emmermann und J. Wohlenberg (eds.), The German Continental Deep drilling Program (KTB), Springer Verlag, 151–176.Google Scholar
  11. Gephart, J.W. and Forsyth, D.W., 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence. J. Geophys. Res., 89, 9305–9320.CrossRefGoogle Scholar
  12. Havir, J., 2000. Stress analyses in the epicentral area of Novy Kostel (Western Bohemia). Studia geoph. et geod., 44, 522–536.CrossRefGoogle Scholar
  13. Jost, M., Büsselberg, T., Jost, O., and Harjes, H.-P., 1998. Source parameters of injection-induced micro-earthquakes at 9 km depth at the KTB drilling site, Germany. Bull. Seism. Soc. Am., 88, 815–832.Google Scholar
  14. Kissling, E., Kradolfer, U. and Maurer, H., 1995. VELEST User's Guide—Short Introduction, Institute of Geophysics and Swiss Seismological Service, ETH, Zürich.Google Scholar
  15. Klinge, K., Plenefisch, T. and Stammler, K., 2003. The earthquake swarm 2000 in the region Vogtland/NW-Bohemia- earthquake recording at German stations and temporal distribution of events. J. of Geodynamics, 35, No. 1–2, 83–96.CrossRefGoogle Scholar
  16. Lienert, B.R.E. and Havskov, J., 1995. A computer program for locating earthquakes both locally and globally, Seism. Res. Lett., 66, 26–36.Google Scholar
  17. Müller, B., Zoback, M.L., Fuchs, K., Mastin, L., Gregersen, G., Pavoni, N., Stephansson, O. and Ljungren, C., 1992. Regional patterns of tectonic stress in Europe. J. Geophys. Res., 97, 1178–11803.Google Scholar
  18. Peterek, A. and Schröder, B., 1997. Neogene fault activity and morphogenesis in the basement area north of the KTB drill site (Fichtelgebirge and Steinwald), Geol. Rundschau, 86, 185–190.CrossRefGoogle Scholar
  19. Plenefisch, T. and Bonjer, K.-P., 1997. The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters. Tectonophysics, 275, 71–97.CrossRefGoogle Scholar
  20. Plenefisch, T. and Klinge, K., 2003. Temporal variations of focal mechanisms in the Novy Kostel focal zone (Vogtland/NW-Bohemia) – Comparison of the swarms of 1994, 1997 and 2000. J. of Geodynamics, 35, No. 1–2, 145–156.CrossRefGoogle Scholar
  21. Rabbel, W., Beilecke, T., Bohlen, T., Fischer, D., Frank, A., Hasenclever, J., Borm, G., Kuck, J., Bram, K., Druivenga, G., Lüschen, E., Gebrande, H., Pujol, J. and Smithson, S., 2004. Superdeep vertical seismic profiling at the KTB deep drill hole (Germany): Seismic close-up view of a major thrust zone down to 8.5 km depth. J. Geophys. Res., 109, B09309, doi:10.1029/2004JB002975.Google Scholar
  22. Scherbaum, F. and Johnson, J., 1992. PITSA, Programmable Interactive Toolbox for Seismological Analysis, IASPEI Software Library, Vol. 5.Google Scholar
  23. Sibson, R.H., 1982. Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States, Bull. Seism. Soc. Am., 72, 151–163.Google Scholar
  24. Slancová, A. and Horálek, J., 2000. Analysis of state of stress during the 1997 earthquake swarm in Western Bohemia. Studia geoph. et geod., 44, 272–291.CrossRefGoogle Scholar
  25. Snoke, J.A., Munsey, J.W., Teague A.G. and Bollinger G.A., 1984. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data, Earthquake Notes, 55, 15.Google Scholar
  26. Sonnleitner, M., 1993. Vergleich unterschiedlicher Methoden der Spannungsinversion von Erdbebendaten – am Beispiel von Erdbeben aus der Region Vogtland/westl. Böhmen. Diploma thesis, Munich University, 101 p.Google Scholar
  27. Stettner, G. (1971). Die Beziehungen der kohlensäureführenden Mineralwässer Nordostbayerns und der Nachbargebiete zum rhegmatischen Störungssystem des Grundgebirges. Geologica Bavarica 64, 385–394.Google Scholar
  28. Švancara, J., Gnojek, I., Hubatka, F. and Dědáček, K., 2000. Geophysical field pattern in the west Bohemian geodynamic active area. Studia geoph. et geod., 44, 307–326.CrossRefGoogle Scholar
  29. Waldhauser, F. and Ellsworth, W.L., 2000. A double-difference earthquake location algorithm: Method and application to the Northern Hayward Fault, California, Bull. Seism. Soc. Am., 90, 1353–1368.CrossRefGoogle Scholar
  30. Waldhauser, F., 2001. HypoDD – A program to compute double-difference hypocenter locations, U.S. Geological Survey Open-File Report 01–113.Google Scholar
  31. Wessel, P. and Smith, W.H.F., 1998. New, improved version of Generic Mapping Tools released. Eos Trans., 79 (47), 579.CrossRefGoogle Scholar
  32. Wirth, W., Plenefisch, T., Klinge, K., Stammler, K. and Seidl, D., 2000. Focal mechanisms and stress field in the region Vogtland/Western Bohemia. Studia geoph. et geod., 44, 126–141.CrossRefGoogle Scholar
  33. Zoback, M.D. and Harjes, H.-P., 1997. Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany. J. Geophys. Res., 102, 18477–18491.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • M. Ibs-von Seht
    • 1
    • 4
  • T. Plenefisch
    • 1
  • E. Schmedes
    • 1
  1. 1.Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)HannoverGermany
  2. 2.Seismologisches ZentralobservatoriumBundesanstalt für Geowissenschaften und Rohstoffe (BGR/SZGRF)HannoverGermany
  3. 3.Department of Earth and Environmental Sciences, GeophysicsMunich UniversityMunichGermany
  4. 4.Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)HannoverGermany

Personalised recommendations