Journal of Seismology

, Volume 9, Issue 3, pp 341–366 | Cite as

Deformation and stress regimes in the Hellenic subduction zone from focal Mechanisms

Article

Abstract

Fault plane solutions for earthquakes in the central Hellenic arc are analysed to determine the deformation and stress regimes in the Hellenic subduction zone in the vicinity of Crete. Fault mechanisms for earthquakes recorded by various networks or contained in global catalogues are collected. In addition, 34 fault plane solutions are determined for events recorded by our own local temporary network on central Crete in 2000–2001. The entire data set of 264 source mechanisms is examined for types of faulting and spatial clustering of mechanisms. Eight regions with significantly varying characteristic types of faulting are identified of which the upper (Aegean) plate includes four. Three regions contain interplate seismicity along the Hellenic arc from west to east and all events below are identified to occur within the subducting African lithosphere. We perform stress tensor inversion to each of the subsets in order to determine the stress field. Results indicate a uniform N-NNE direction of relative plate motion between the Ionian Sea and Rhodes resulting in orthogonal convergence in the western forearc and oblique (40–50) subduction in the eastern forearc. There, the plate boundary migrates towards the SE resulting in left-lateral strike-slip faulting that extends to onshore Eastern Crete. N110E trending normal faulting in the Aegean plate at this part is in accordance with this model. Along-arc extension is observed on Western Crete. Fault plane solutions for earthquakes within the dipping African lithosphere indicate that slab pull is the dominant force within the subduction process and responsible for the roll-back of the Hellenic subduction zone.

Keywords

Crete Hellenic subduction zone fault plane solutions seismotectonics deformation regime stress tensor inversion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelier, J., Lyberis, N., LePichon, X. and Barrier, E., 1982, The tectonic development of the Hellenic arc and the sea of Crete: A synthesis, Tectonophysics 86, 159–196.Google Scholar
  2. Bath, M., 1983, The seismology of Greece, Tectonophysics 98, 165–208.Google Scholar
  3. Becker, D., 2000, Mikroseismizität und Deformation der Kruste Ostkretas, Germany, Master thesis, Faculty of Geosciences, Hamburg University (in German).Google Scholar
  4. Benetatos, C., Kiratzi, A., Papazachos and C. Karakaisis, G., 2004, Focal mechanisms of shallow and intermediate depth earthquakes along the Hellenic Arc, J. of Geodyn. 37, 253–296.Google Scholar
  5. Bijwaard, H. and Spakman, W., 1998, Closing the gap regional and global travel time tomography, J. Geophys. Res. 103, 30055–30078.CrossRefGoogle Scholar
  6. Bohnhoff, M., Baisch, S. and Harjes, H.-P., 2004, Focal mechanisms of induced seismicity at the superdeep German Continental Deep Drilling Program (KTB) borehole and their relation to fault structure and stress field, J. Geophys. Res. 109, B02309, doi:10.1029/2003JB002528.Google Scholar
  7. Bohnhoff, M., Makris, J., Papanikolaou, D. and Stavrakakis, G., 2001, Crustal investigation of the Hellenic subduction zone using wide aperture seismic data, Tectonophysics 343, 239–262.CrossRefGoogle Scholar
  8. Brönner, M., 2003, Untersuchungen des Krustenaufbaus entlang des Mediterranen Rückens abgeleitet aus geophysikalischen Messungen, PhD thesis, Faculty of Geosciences, Hamburg University (in German).Google Scholar
  9. Christova, C., Scholz, C.H. and Kao, H., 2004, Stress field in the Vanuatu (New Hebrides) Wadati-Benioff zone inferred by inversion of earthquake focal mechanisms: Evidence for systematic lateral and vertical variations of principal stresses, J. Geodyn. 37, 125–137.CrossRefGoogle Scholar
  10. Comte, D., Haessler, H., Dorbath, L., Pardo, M., Monfred, T., Lavenn, A., Pontoise, B. and Hello, Y., 2002, Seismicity and stress distribution in the Copiapo, northern Chile, subduction zone using combined on- and offshore seismic observations, Phys. Earth Planet. Sci. Int. 132, 197–217.Google Scholar
  11. DeChabalier, J.B., Lyon-Caen, H., Zollo, A., Deschamps, A., Bernard, P. and Hatzfeld, D., 2002, A detailed analysis of microearthquakes in western Crete from digital three-component seismograms, Geophys. J. Int. 110, 347–360.Google Scholar
  12. Delibasis, N., Ziazia, M., Voulgaris, N., Papadopoulos, T., Stavrakakis, G., Papanastassiou, D. and Drakatos, G., 1999, Microseismic activity and seismotectonics of Heraklion Area (central Crete Island, Greece), Tectonophysics 308, 237–248.CrossRefGoogle Scholar
  13. Doutsos, T. and Kokkalas, S., 2001, Stress and deformation patterns in the Aegean region, J. Struct. Geol. 23, 455–472.Google Scholar
  14. Endrun, B., Meier, T., Bischoff, M. and Harjes, H.-P., 2004, Lithospheric structure in the area of Crete constrained by receiver functions and dispersion analysis of Rayleigh phase velocities, Geophys. J. Int. 158, 592–608.CrossRefGoogle Scholar
  15. Engdahl, E.R., van der Hilst, R. and Buland, R., 1998, Global teleseismic earthquake relocation with improved travel times and procedures for depth determination Bull. Seis. Soc. Am. 88, 722–743.Google Scholar
  16. Gephart, J.W., 1990, Stress and the direction of slip on fault planes, Tectonics 9, 845–858.Google Scholar
  17. Gephart, J.W. and Forsyth, D.W., 1984, An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence, J. Geophys. Res. 89, 9305–9320.Google Scholar
  18. Hanka, W. and Kind, R., 1994, The GEOFON Program, Ann. Geofis. 37, 1060–1065.Google Scholar
  19. Hatzfeld, D., Besnard, M., Makropoulos, K. and Hatzidimitriou, P., 1993a, Microearthquake seismicity and fault-plane solutions in the southern Aegean and its geodynamic implications, Geophys. J. Int. 115, 799–818.Google Scholar
  20. Hatzfeld, D. et al., 1993b, Subcrustal microearthquake seismicity and fault plane solutions beneath the Hellenic arc, J. Geophys. Res., 98(B6), 9861–9870.Google Scholar
  21. Huchon, P., Lyberis, N., Angelier, J., LePichon, X and Renard, V., 1982, Tectonic of the Hellenic Trench: A synthsis of Sea-Beam and submersible observations, Tectonophysics 86, 69–211.CrossRefGoogle Scholar
  22. Huguen, C., Mascle, J., Chaumillon, E., Woodside, J.M., Benkhelil, J., Kopf, A. and Volksonkaia, A., 2001, Deformation styles of the eastern Mediterranean Ridge and surroundings from combined swath mapping and seismic reflection profiling, Tectonophysics 343, 21–47.CrossRefGoogle Scholar
  23. Isacks, B. and Molnar, P., 1971, Distribution of stresses in the descending lithosphere from a global survey of focal-mechanism solutions of mantle earthquakes, Rev. Geophys. Space Phys. 9(1) 103–174.Google Scholar
  24. Jackson, J. and McKenzie, D.P., 1988, The relationship between plate motion and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East, Geophys. J. 93, 45–73.Google Scholar
  25. Jost, M.L., Knabenbauer, O., Cheng, J. and Harjes, H.-P., 2002, Fault plane solutions of microearthquakes and small events in the Hellenic arc, Tectonophysics 356, 87–114.CrossRefGoogle Scholar
  26. Kiratzi, A. and Louvari, E., 2003, Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: A new database, J. Geod. 36, 251–274.Google Scholar
  27. Knapmeyer, M., 1999, Geometry of the Aegean Benioff zone, Ann. Geofis. 42, 27–38.Google Scholar
  28. Lambeck, K., 1995, Late Pleisocene and Holocene sea-level change in Greece and southwestern Turkey: A separation of eustatic, isostatic and tectonic contributions, Geophys. J. Int. 122, 1022–1044.Google Scholar
  29. LePichon, X. and Angelier, J., 1979, The Hellenic arc and trench system: A key to the neotectonic evolution of the Eastern Mediterranean area, Tectonophysics 60, 1–42.Google Scholar
  30. LePichon, X., Chamot-Rooke, N. and Lallemant, S., 1995, Geodetic determination of the kinematics of central Greece with respect to Europe: Implications for Eastern Mediterranean tectonics, J. Geophys. Res. 100, 12675–12690.Google Scholar
  31. Li, X., Bock, G. Vafidis, A., Kind, R., Harjes, H.-P., Hanka, W., Wylegalla, K., Meijde, M.v.d. and Yuan, X., 2003, Receiver function study of the Hellenic subduction zone: Imaging crustal thickness variations and the oceanic Moho of the descending African lithosphere, Geophys. J. Int. 155, 733–748.CrossRefGoogle Scholar
  32. Lu, Z., Wyss, M. and Pulpan, H., 1997, Details of stress directions in the Alaska subduction zone from fault plane solutions, J. Geophys. Res. 102(B3), 5385–5402.CrossRefGoogle Scholar
  33. Lyon-Caen, H., et al., 1988, The 1986 Kalamata (south Peloponnesus) earthquake: Detailed study of a normal fault, evidences for east-west extension in the Hellenic arc, J. Geophys. Res. 93, 14967–15000.Google Scholar
  34. Makropoulos, K.C. and Burton, P.W., 1981, A catalogue of seismicity in Greece and adjacent areas, Geophys. J. R. Astron. Soc. 65, 741–762.Google Scholar
  35. Marone, F., Meijde, M.v.d., Lee, S.v.d. and Giardini, D., 2003, Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia-Africa plate boundary region, Geophys. J. Int. 154, 499–514.CrossRefGoogle Scholar
  36. Mascle, J., et al., 1999, Images may show start of European-African plate collision, EoS Transactions 80 (37), American Geophysical Union, 421–428.Google Scholar
  37. McClusky, S. et al., 2000, Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus, J. Geophys. Res. 105, 5695–5719.CrossRefGoogle Scholar
  38. McGinty, P., Reyners, M. and Robinson, R., 2000, Stress directions in the shallow part of the Hikurangi subduction zone, New Zealand, from the inversion of earthquake first motions, Geophys. J. Int. 142, 339–350.CrossRefGoogle Scholar
  39. McKenzie, D.P., 1970, Plate tectonics of the mediterranean region, Nature 226, 239–243.Google Scholar
  40. McKenzie, D.P., 1972, Active tectonics of the mediterranean region, Geophys. J. R. Astr. Soc. 30, 109–185.Google Scholar
  41. McKenzie, D.P., 1978, Active tectonics of the Alpine-Himalayan belt: The Aegean Sea and surrounding regions, Geophys. J. R. astron. Soc. 55, 217–254.Google Scholar
  42. Meier, T., Dietrich, K., Stöckhert, B. and Harjes, H.-P., 2004a, One-dimensional models of shear wave velocity for the eastern Mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications, Geophys. J. Int. 156, 45–58.CrossRefGoogle Scholar
  43. Meier, T., Rische, M., Endrun, B., Vafidis, A. and Harjes, H.-P., 2004b, Seismicity of the Hellenic subduction zone in the area of western and central Crete observed by temporary local seismic networks, Tectonophysics 383, 149–169.CrossRefGoogle Scholar
  44. Meijer, P.Th. and Wortel, M.J.R., 1996, Temporal variation in the stress field of the Aegean region, Geophys. Res. Lett. 23(5), 439–442.CrossRefGoogle Scholar
  45. Meulenkamp, J.E., Wortel, M.J.R., VanWamel, W.A., Spakman and Hoogerduyn Strating, E., 1988, On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene, Tectonophysics 146, 203–215.CrossRefGoogle Scholar
  46. Michael, A.J., 1984, Determination of stress from slip data; faults and folds, J. Geophys. Res. 89, 11517–11526.Google Scholar
  47. Michael, A.J., 1987, Use of focal mechanisms to determine stress: A control study, J. Geophys. Res. 92(B1), 357–368.CrossRefGoogle Scholar
  48. Michael, A.J., 1991, Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence: New techniques and results, J. Geophys. Res. 96, 6303–6319.Google Scholar
  49. Papadimitriou, E., 1993, Focal mechanisms along the convex side of the Hellenic arc, Bollettino de Geofisica Teorica et Applicata XXXV, 401–426.Google Scholar
  50. Papadopoulos, G.A., Kondopoulou, D., Leventakis, G.-A. and Pavlides, S., 1986, Seismotectonics of the Aegean region, Tectonophysics 124, 67–84.CrossRefGoogle Scholar
  51. Papazachos, B.C., 1973, Distribution of seismic foci in the Mediterranean and surrounding area and its tectonic implications, Geophys. J.R. Astron. Soc. 33, 421–430.Google Scholar
  52. Papazachos, B.C. and Papazachou, C.B., 1997, The earthquakes of Greece, Ziti (ed.), Technical books editions, Thessaloniki, 304 pp.Google Scholar
  53. Papazachos, B.C., Kiratzi, A. and Papadimitriou, E., 1991, Regional Focal Mechanisms for Earthquakes in the Aegean Area, PAGEOPH 126(4), 405–420.Google Scholar
  54. Papazachos, B.C., Karakostas, V.G., Papazachos, C.B. and Scordilis, E.M., 2000, The geometry of the Wadati-Benioff zone and lithospheric kinematics in the Hellenic arc, Tectonophysics 319, 275–300.CrossRefGoogle Scholar
  55. Snoke, J.A., 2003, FOCMEC: Focal Mechanism determinations, International Handbook of Earthquake and Engineering Seismology, W.H.K. Lee, H. Kanamori, P.C. Jennings and Kisslinger, C. (eds.), Academic Press, San Diego, Chapter 85.12.Google Scholar
  56. Snoke, J.A., Munsay, J.W., Teague, A.G. and Bollinger, G.A., 1984, A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data, EQ Notes 55(3), 15.Google Scholar
  57. Spakman, W., Wortel, M.J.R. and Vlaar, N.J., 1988, The Hellenic subduction zone: A tomographic image and its geodynamic implication, Geophys. Res. Lett. 15, 60–63.Google Scholar
  58. Taymaz, T., Jackson, J. and Westaway, R., 1990, Earthquake mechanisms in the Hellenic trench near Crete, Geophys. J. Int. 102, 695–731.Google Scholar
  59. TenVeen, J.H., 2004, Extension of Hellenic forearc shear zones in SW Turkey: The Pliocene-Quartenary deformation of the Esen Cay Basin, J. Geodyn. 37, 181–204.CrossRefGoogle Scholar
  60. TenVeen, J.H. and Kleinspehn, K.L., 2003, Incipient continental collision and plate-boundary curvature: Late Pliocene-Holocene transtensional Hellenic forearc, Crete, Greece, J. Geol. Soc. London 160, 161–181.Google Scholar
  61. Truffert, C., Chamot-Rouke, N., Lallemant, S., DeVoogd, B., Huchon, P. and LePichon, X., 1993, The crust of the western Mediterranean Ridge from deep seismic data and gravity modelling, Geophys. J. Int. 114, 360–372.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Marco Bohnhoff
    • 1
  • Hans-Peter Harjes
    • 2
  • Thomas Meier
    • 2
  1. 1.GeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.Faculty of GeosciencesRuhr-University of BochumBochumGermany

Personalised recommendations