Advertisement

Journal of Seismology

, Volume 8, Issue 4, pp 507–524 | Cite as

Ambient noise energy bursts observation and modeling: Trapping of harmonic structure-soil induced–waves in a topmost sedimentary layer

  • C. CornouEmail author
  • P. Guéguen
  • P.-Y. Bard
  • E. Haghshenas
Article

Abstract

We study the nature of energy bursts that appeared in the frequency range 3–5 Hz in ambient seismic noise recorded in the Grenoble basin (French Alps) during a seismological array experiment. A close agreement is found between the identified azimuths of such noise bursts with the location of an industrial chimney. In-situ measurements of the chimney dynamic characteristics show a coincidence between the frequency of the first harmonic mode of the chimney and the fundamental frequency of a thin surficial layer that overlay the deep sediment fill. The interaction between the chimney and the surficial layer is then numerically simulated using simple impedance models and two soil profiles. Simulations exhibit a satisfactory agreement with observations and suggest that energy bursts result of inertial structure-soil interaction favored by resonance effects between the first harmonic mode of the structure and the fundamental frequency of the topmost layer.

Key words

H over V spectral ratio microtremors site effects structure–soil interaction urban ground motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, F. and Flandrin, P., 1995, Improving the readability of time-frequency and time-scale representations by reassignment methods, IEEE Trans. Signal Proc. 43(5), 1068–1089.Google Scholar
  2. Bard, P.-Y., 1998, Microtremor measurement: A tool for site effect estimation? The effects of surface geology on seismic motion, In: Irikura, K., Kudo, K., Okada, H. and Sasatani, T. (eds.), Balkema, Rotterdam, pp. 1251–1279.Google Scholar
  3. Bettig, B., Bard, P.-Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C. and Hatzfeld, D., 2001, Analysis of dense array measurements using the modified spatial auto-correlation method (SPAC), Application to Grenoble area, Bull. Geof. Teor. Appl. 42, 3–4, 281–304.Google Scholar
  4. Chatelain, J.L., Guéguen, P., Guillier, B., Fréchet, J., Bondoux, F., Sarrault, J., Sulpice, P. and Neuville, J.M., 2000, CityShark: A user-friendly instrument dedicated to ambient noise (microtremor) recording for site and building response studies, Seism Res Lett. 71, 6, 698–703.Google Scholar
  5. Clough, R.W. and Penzien, J., 1993, Dynamics of structures. 2nd ed, MacGraw-Hill, Inc Editor, 739 pp.Google Scholar
  6. Cornou, C., 2002, Traitement d’antenne et imagerie sismique dans l’agglomération grenobloise (alpes françaises): implications pour les effets de site, PhD Dissertation, Université Joseph Fourier, Grenoble, 260 pp (in French).Google Scholar
  7. Cornou, C., Bard, P.-Y., and Dietrich, M., 2003a, Contribution of dense array analysis to the identification and quantification of basin-edge induced waves. Part I: Methodology, Bull. Seism. Soc. Am. 93(6) 2604–2623.Google Scholar
  8. Cornou, C., Bard, P.-Y. and Dietrich, M., 2003a, Contribution of dense array analysis to the identification and quantification of basin-edge induced waves, Part II: Application to Grenoble basin (French Alps), Bull. Seism. Soc. Am. 93(6) 2624–2648.Google Scholar
  9. Dunand F., Bard, P.Y., Chatelain, J.-L., Guéguen, P., Vassail, T. and Farsi, M.N., 2002, Damping and frequency from Randomdec method applied to in situ measurements of ambient vibrations. Evidence for effective soil structure interaction, Proceedings of the l2th European Conference on Earth Engineering, paper no. 869, London, UK.Google Scholar
  10. Guéguen, P., Chatelain, J.-L., Guillier, B., Yepes, H. and Egred, J., 1998, Site effect and damage distribution in Pujili (Ecuador) after the 28 March 1996 earthquake, Soil. Dynamics Earthquake Eng. 17, 329–334.Google Scholar
  11. Guéguen, P., Bard, P.-Y. and Oliveira, C.S., 2000a, Near to distant motions from an isolated RC-building model: experimental and numerical approaches, Bull. Seism. Soc. Am. 90(6) 1464– 1479.Google Scholar
  12. Guéguen, P., Chatelain, J.-L., Guillier, B. and Yepes, H., 2000b, An indication of the soil topmost layer response in Quito (Ecuador) using H/V spectral ratio, Soil. Dynamics Earthquake Eng. 19, 127–133.Google Scholar
  13. Guéguen, P., Bard, P.-Y. and Chavez-Garcia, F.J., 2002, Site-City Interaction in Mexico City-Like environments: An Analytical Study, Bull. Seism. Soc. Am. 92(2) 794–811.Google Scholar
  14. Hisada, Y., 1994, An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (part I), Bull. Seism. Soc. Am 84, 1456–1472.Google Scholar
  15. Hisada, Y., 1995, An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (part II), Bull. Seism. Soc. Am 85, 1080–1093.Google Scholar
  16. Ivanovic, S.S., Trifunac, M.D. and Todorovska, M.I., 2000, Ambient vibration tests of structures: A review, Bull Indian Soc Earthquake Tech, Special issue on experimental methods.Google Scholar
  17. Kanamori, H., Mori, J., Anderson, D.L. and Heaton, T.H., 1991, Seismic excitation by the space shuttle Columbia, Nature 349, 781–782.Google Scholar
  18. Jennings, P.C., 1970, Distant motions from a building vibration test, Bull. Seism. Soc. Am 60, 2037–2043.Google Scholar
  19. Lebrun, B., 1997, Les effets de site: Etude expérimentale et simulation de trios configurations, PhD Dissertation, Université Joseph Fourier, Grenoble, 208 pp (in French).Google Scholar
  20. Lebrun, B., Hatzfeld, D. and Bard, P.-Y., 2001, A site effect study in urban area: experimental results in Grenoble (France), Pageoph 158, 2543–2557.Google Scholar
  21. Nakamura, Y., 1989, A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface, QR of R.T.R. 30–1.Google Scholar
  22. Nicoud, G., Royer, G., Corbin, J.-C., Lemeille, F. and Paillet, A., 2002, Glacial erosion and infilling of the Isére Valley during the recent Quaternary, Géologie de la France 4, 39– 49.Google Scholar
  23. Pedersen, H.A., Mars, J. and Amblard, P.-O., 2002, Improving surface wave group velocity measurements by energy reassignment, Geophysics 68, 677–684.Google Scholar
  24. Schmidt, R.O., 1981, A signal subspace approach to multiple emitter location and spectral estimation, Ph.D. Dissertation. 201 pp. Stanford University, Stanford, California.Google Scholar
  25. Vallon, M., 1999, Estimation de I’épaisseur d’alluvions et s’édiments quatemaires dans le r’égion grenobloise par inversion des anomalies gravim’étriques, IRSN/CNRS Internal Report, 34 pp (in French).Google Scholar
  26. Wirgin, A. and Bard, P.-Y., 1996, Effects of buildings on the duration and amplitude of ground motion in Mexico city, Bull. Seism. Soc. Am 86, 914–920.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • C. Cornou
    • 1
    • 4
    Email author
  • P. Guéguen
    • 1
    • 2
  • P.-Y. Bard
    • 1
    • 2
  • E. Haghshenas
    • 1
    • 3
  1. 1.Laboratoire de Géophysique Interne et TectonophysiqueUniversité Joseph FourierGrenobleFrance
  2. 2.Laboratoire Central des Ponts-et-ChausséesParisFrance
  3. 3.International Institute of Earthquake Engineering and SeismologyTeheranIran
  4. 4.Swiss Seismological ServiceETH ZürichSwitzerland

Personalised recommendations