Skip to main content
Log in

Study on the Structure, Vacancy Defect, and Magnetic Properties for Gd1−xCexMnO3 Ceramics

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The effects of the Ce doping on the structure, vacancy defect, and magnetic properties of the Gd1−xCexMnO3 polycrystalline samples fabricated by the solid-state reaction method were studied. All Gd1−xCexMnO3 samples exhibit single-phase structure, and Ce doping causes structure distortion without any structural transition. The microstructure of the synthesized samples is compact, and Ce doping reduces the grain size. XPS result shows that the charge compensation induced by Ce doping is achieved mainly by the decrease of cation valence (forming Mn2+) in the x = 0.00–0.05 ceramics, while the decrease of oxygen vacancies concentration plays dominant role in the x = 0.10–0.20 ceramics. The positron annihilation spectrum (PAS) measurement shows that Ce doping has a great influence on the cation vacancy size and concentration of Gd1−xCexMnO3 samples; the vacancy concentration increases with Ce doping content. Ce doping could obviously improve the transition temperatures and magnetization of the Gd1−xCexMnO3. This investigation demonstrates that the cation vacancy concentration is one of the important factors that could tailor the magnetic properties of Gd1−xCexMnO3 ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stein, J., Baum, M., Holbein, S., Finger, T., Cronert, T., Tolzer, C., Frohlich, T., Biesenkamp, S., Schmalzl, K., Steffens, P., Lee, C.H., Braden, M.: Control of chiral magnetism through electric fields in multiferroic compounds above the long-range multiferroic transition. Phys. Rev. Lett. 119, 177201 (2017)

  2. Chakrabarti, C., Fu, Q.S., Chen, X.H., Qiu, Y., Yuan, S.L., Li, C.L.: Modulation of magnetic, ferroelectric and leakage properties by HoFeO3 substitution in multiferroic 0.7BiFeO3–0.3Ba0.8Ca0.2TiO3 solid solutions. Ceram. Int. 46, 212 (2020)

  3. Kadomtseva, A.M., Popov, Y.F., Vorobev, G.P., Kamilov, K.I., Pyatakov, A.P., Ivanov, V.Y., Mukhin, A.A., Balbashov, A.M.: Specificity of magnetoelectric effects in a new GdMnO3 magnetic ferroelectric. JETP. Lett. 81, 19 (2005)

    Article  ADS  Google Scholar 

  4. Lin, L., Li, L., Yan, Z.B., Tao, Y.M., Dong, S., Liu, J.M.: Ferroelectricity of polycrystalline GdMnO3 and multifold magnetoelectric responses. Appl. Phys. A 112, 947 (2013)

    Article  ADS  Google Scholar 

  5. Kimura, T., Lawes, G., Goto, T., Tokura, Y., Ramirez, A.P.: Magnetoelectric phase diagrams of orthorhombic RMnO3 (R = Gd, Tb, and Dy). Phys. Rev. B 71, 224425 (2005)

  6. Noda, K., Nakamura, S., Nagayama, J., Kuwahara, H.: Magnetic field and external-pressure effect on ferroelectricity in manganites: comparison between GdMnO3 and TbMnO3. J. Appl. Phys. 97, 10C103 (2005)

    Article  Google Scholar 

  7. Tiwari, P., Rath, C.: Effect of Fe on Jahn-Teller distortion and magnetic transitions in GdMn1−xFexO3 (x = 0.3 and 0.5). Physica. B. 570, 172 (2019)

  8. Zhang, G.Q., Luo, S.J., Dong, S., Gao, Y.J., Wang, K.F., Liu, J.M.: Enhanced ferroelectricity in orthorhombic manganites Gd1-xHoxMnO3. J. Appl. Phys. 109, 07D901 (2011)

    Article  Google Scholar 

  9. Dean, J.A.: Lange’s Handbook of Chemistry. McGraw-Hill, New York (1999)

    Google Scholar 

  10. Jin, S.X., Zhang, P., Lu, E.Y., Guo, L.P., Wang, B.Y., Cao, X.Z.: Correlation between Cu precipitates and irradiation defects in Fe-Cu model alloys investigated by positron annihilation spectroscopy. Acta Mater. 103, 658 (2016)

    Article  ADS  Google Scholar 

  11. Dai, H.Y., Ye, F.J., Li, T., Chen, Z.P., Cao, X.Z., Wang, B.Y.: Impact of Li doping on the microstructure, defects, and physical properties of CuFeO2 multiferroic ceramics. Ceram. Int. 45, 24570 (2019)

    Article  Google Scholar 

  12. Nandy, A., Roychowdhury, A., Kar, T., Das, D., Pradhan, S.K.: Effect of sodium doping on the microstructure, lattice distortion and magnetic properties of GdMnO3 tiny single crystals. RSC. Adv. 6, 20609 (2016)

    Article  ADS  Google Scholar 

  13. Qi, X.D., Dho, J., Tomov, R., Blamire, M.G., MacManus-Driscoll, J.L.: Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)

  14. Bharti, B., Kumar, S., Lee, H., Kumar, R.: Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 6, 32355 (2016)

    Article  ADS  Google Scholar 

  15. Uthaman, B., Anand, K.S., Rajan, R.K., Kyaw, H.H., Thomas, S., Al-Harthi, S., Suresh, K.G., Varma, M.R.: Structural properties, magnetic interactions, magnetocaloric effect and critical behaviour of cobalt doped La0.7Te0.3MnO3. RSC. Adv. 5, 86144 (2015)

  16. Huang, F.Z., Lu, X.M., Wang, Z., Lin, W.W., Kan, Y., Bo, H.F., Cai, W., Zhu, J.S.: Impact of annealing atmosphere on the multiferroic and dielectric properties of BiFeO3/Bi3.25La0.75Ti3O12 thin films. Appl. Phys. A. 97, 699 (2009)

  17. Wen, X.L., Chen, Z., Liu, E.H., Lin, X., Chen, C.L.: Effect of Ba and Mn doping on microstructure and multiferroic properties of BiFeO3 ceramics. J. Alloy. Compd. 678, 511 (2016)

    Article  Google Scholar 

  18. Tang, Y., Zhang, Y., Du, P.Y., Deng, W.: Direct control of defects on positron lifetimes and dielectric constant of microwave ceramics. J. Am. Ceram. Soc. 96, 2537 (2013)

    Article  Google Scholar 

  19. Ge, W.N., Rahman, A., Cheng, H.R., Zhang, M., Liu, J.D., Zhang, Z.M., Ye, B.J.: Probing the role of cation vacancies on the ferromagnetism of La-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 449, 401 (2018)

    Article  ADS  Google Scholar 

  20. Brandt, W., Paulin, R.: Positron diffusion in solids. Phys. Rev. B 5, 2430 (1972)

    Article  ADS  Google Scholar 

  21. Dai, H.Y., Ye, F.J., Chen, Z.P., Li, T., Liu, D.W.: The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics. J. Alloys. Compd. 734, 60 (2018)

    Article  Google Scholar 

  22. Wang, D.D., Qi, N., Jiang, M., Chen, Z.Q.: Defects versus grain size effects on the ferromagnetism of ZrO2 nanocrystals clarified by positron annihilation. Appl. Phys. Lett. 102, 042407 (2013)

  23. Pal, A., Dhana Sekhar, C., Venimadhav, A., Murugavel, P.: Tailoring of magnetic orderings in Fe substituted GdMnO3 bulk samples towards room temperature. J. Phys. Condens. Mat. 29, 405803 (2017)

  24. Nagaraja, B.S., Rao, A., Babu, P.D., Okram, G.S.: Structural electrical magnetic and thermal properties of Gd1−xSrxMnO3 (0.2 ≤ x ≤ 0.5) manganites. Physica. B. 479, 10 (2015)

  25. Zhang, Y.N., Li, J.J., Zhang, Z.Q., Liu, F.Y., Zhao, X.D., Liu, X.Y.: Negative magnetism in perovskite manganites Gd1−xSrxMnO3 (0.1 ≤ x ≤ 0.3). Chem. Res. Chin. Univ. 31, 699 (2015)

  26. Nonato, A., Yanez-Vilar, S.Y., Sanchez-Andujar, M., Mira, J., Senaris-Rodriguez, M.A., Paschoal, C.W.A.: Impact of Co-doping on the structural and magnetic properties of multiferroic CaMn7O12. J. Alloy. Compd. 740, 559 (2018)

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (11775192 and 12005194) and the Natural Science Foundation of Henan Province (212300410092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haizeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, H. Study on the Structure, Vacancy Defect, and Magnetic Properties for Gd1−xCexMnO3 Ceramics. J Supercond Nov Magn 34, 3229–3236 (2021). https://doi.org/10.1007/s10948-021-06054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06054-y

Keywords

Navigation