Advertisement

First-Principles Predictions on Half-Metallic Results of RBaMn2O6-δ (R = Nd, Pr, La and δ = 0, 1) Double Perovskite Compounds

  • Saadi BerriEmail author
  • Nadir Bouarissa
  • Mourad Attallah
Original Paper
  • 18 Downloads

Abstract

The structural, electronic, and half-metallic properties of double perovskite RBaMn2O6-δ (X = Nd, Pr, La and δ = 0, 1) compounds are carried out by employing full-potential linearized augmented plane wave (FP-LAPW) method. Perdew-Burke-Ernzerhof-generalized gradient approximations (PBE-GGA) are used for the exchange-correlation potential. Features such as the lattice constant, bulk modulus, and its pressure derivative are reported. The optimized lattice parameters are found to be in good accord with experiment. Based on the calculated band structures, we found that the RBaMn2O6 (R = Nb, Pr, La) are half-metallic ferromagnets with a magnetic moment of 10, 9, and 7 μB/fu and half-metallic flip gaps of 1.31, 1.43, and 1.17 eV, respectively. Our compounds are identified as potential candidates for spintronic applications and magnetoelectronic fields.

Keywords

Double perovskite oxides Half-metallic ferromagnets FP-LAPW method Spintronic applications 

Notes

References

  1. 1.
    Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: J. Am. Chem. Soc. 131, 6050 (2009)CrossRefGoogle Scholar
  2. 2.
    R. F. Service: Science. 344, 458 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Snaith, H.J.: J. Phys. Chem. Lett. 4, 3623 (2013)CrossRefGoogle Scholar
  4. 4.
    Park, N.N.: J. Phys. Chem. Lett. 4, 2423 (2013)CrossRefGoogle Scholar
  5. 5.
    K. T. Butler, J. M. Frost, A. Walsh, Mater. Horiz. 2 (2015) 228 and references thereinCrossRefGoogle Scholar
  6. 6.
    Yang, J., Zhang, P., Wei, S.-H.: J. Phys. Chem. Lett. 9, 31 (2018)CrossRefGoogle Scholar
  7. 7.
    Fu, R., Chen, Y., Yong, X., Ma, Z., Wang, L., Lv, P., Lu, S., Xiao, G., Zou, B.: Nanoscale. 11, 17004 (2019)CrossRefGoogle Scholar
  8. 8.
    Garcia-Espejo, G., Rodriguez-Padrón, D., Luque, R., Camacho, L., de Miguel, G.: Nanoscale. 11, 16650 (2019)CrossRefGoogle Scholar
  9. 9.
    Kuz’min, E.V., Ovchinnikov, S.G., Singh, D.J.: Phys. Rev. B. 68, 024409 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Kuz’min, E.V., Ovchinnikov, S.G., Singh, D.J.: J. Expt. Theor. Phys. 96, 96 (2003)Google Scholar
  11. 11.
    Gavrichkov, V.A., Ovchinnikov, S.G.: Phys. B. 259-261, 828 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Gavrichkov, V.A., Ivanova, N.B., Ovchinnikov, S.G., Balaev, A.D., Aminov, T.G., Shabunina, G.G., Chervov, V.K., Petukhov, M.V.: Phys. Solid State. 41, 1652 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Correa, H.P.S., Cavalcante, I.P., Souza, D.O., Santos, E.Z., Orlando, M.T.D., Belich, H., Silva, F.J., Medeiro, E.F., Pires, J.M., Passamai, J.L., Martinez, L.G., Rossi, J.L.: Cerâmica. 56, 193 (2010)CrossRefGoogle Scholar
  14. 14.
    Coey, J.M.D., Viret, M., von Molnar, S.: Adv. Phys. 48, 167 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Zeng, Z., Faweett, I.D., Greenblatt, M., Croft, M.: Mater. Res. Bull. 36, 705 (2001)CrossRefGoogle Scholar
  16. 16.
    Fang, Z., Terakura, K., Kanamori, J.: Phys. Rev. B. 63, R180507 (2001)CrossRefGoogle Scholar
  17. 17.
    Kato, H., Okada, T., Okimoto, Y., Tomioka, Y., Oikawa, K., Kamiyama, T., Tokura, Y.: Phys. Rev. B. 69, 184412 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Wolf, S.A., Awschalom, D.D., Buhram, R.A., Daughton, J.M., van Molnár, S., Roukes, M.L., Chtchelkanova, A.Y., Treger, D.M.: Science. 294, 1488 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Wolf, S.A., Chtchelkanova, A.Y., Treger, D.M.: IBM J. Res. Dev. 50, 1 (2006)CrossRefGoogle Scholar
  20. 20.
    Parkin, S., Jiang, X., Kaiser, C., Pan, A.: chula, K. Roche, M. Samant. Proc. IEEE. 91, 5 (2003)CrossRefGoogle Scholar
  21. 21.
    de Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: Phys. Rev. Lett. 50, 2024 (1984)CrossRefGoogle Scholar
  22. 22.
    Dowber, P.: J. Phys. Condens. Matter. 19, 310301 (2007)CrossRefGoogle Scholar
  23. 23.
    Coey, J.M.D., Venkatesan, M.: J. Appl. Phys. 91, 8345 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    Luo, Y., Ren, C., Wang, S., Li, S., Zhang, P., Yu, J., Sun, M., Sun, Z., Tang, W.: Nanoscale Res. Lett. 13, 282 (2018)ADSCrossRefGoogle Scholar
  25. 25.
    Luo, Y., Wang, S., Li, S., Sun, Z., Yu, J., Teng, W., Sun, M.: Phys. E. 108, 153 (2019)CrossRefGoogle Scholar
  26. 26.
    Sa-Ke, W., Hong-Yu, T., Yong-Hong, Y., Jun, W.: Chin. Phys. B. 23, 017203 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, S., Wang, J.: Phys. B. 458, 22 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, S., Yu, J.: J. Supercond. Nov. Magn. 31, 2789 (2018)CrossRefGoogle Scholar
  29. 29.
    Meena, S., Anndeep, K.: J. Supercond. Nov. Magn. 32, 2947 (2019)CrossRefGoogle Scholar
  30. 30.
    Rostami, M., Afshari, M., Moradi, M.: J. Alloy. Compd. 575, 301 (2013)CrossRefGoogle Scholar
  31. 31.
    J. M. D. Coey, M. Venkatesan, M. A. Bari, (2002) Half-metallic ferromagnets. In: C. Berthier, L. P. Lévy, G. Martinez (eds), High magnetic fields. Lecture notes in physics, vol. 595, Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  32. 32.
    Park, J.H., Vescovo, E., Kim, H.J., Kwon, C., Ramesh, R., Venkatesan, T.: Nature. 392, 794 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    Wang, J., Meng, J., Wu, Z.: Chem. Phys. Lett. 501, 324 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Berri, S.: J. Magn. Magn. Mater. 385, 124 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Berri, S., Chami, S., Attallah, M., Oumertem, M., Maouche, D.: Electron. Mater. 4, 13 (2018)Google Scholar
  36. 36.
    Samanta, K., Sanyal, P., Saha-Dasgupta, T.: Sci. Rep. 5, 15010 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Dar, S.A., Srivastava, V., Sakalle, U.K.: J. Mag. Mag. Mater. 484, 298 (2019)
  38. 38.
    Ding, L., Khalyavin, D.D., Manuel, P., Blake, J., Orlandi, F., Yi, W., Belik, A.A.: Acta Mater. 173, 20 (2019)Google Scholar
  39. 39.
    Gao, Q., Ma, R.-Y., Li, L., Xie, H.-H., Deng, J.-B.: X.-R. Hu., J. Supercond. Nov. Magn.Google Scholar
  40. 30.
    (2017) 545Google Scholar
  41. 40.
    Nakajima, T., Kageyama, H., Yoshizawa, H., Ohoyama, K., Ueda, Y.: J. Phy. Soc. Japn. 72, 3237 (2003)ADSCrossRefGoogle Scholar
  42. 41.
    Arulraj, A., Ramesha, K., Gopalakrishnan, J., Rao, C.N.R.: J. Solid State Chem. 155, 233 (2000)ADSCrossRefGoogle Scholar
  43. 42.
    Blaha, P., Schwarz, K., Sorantin, P., Trickey, S.B.: Comput. Phy. Commun. 59, 399 (1990)ADSCrossRefGoogle Scholar
  44. 43.
    Hohenberg, P., Kohn, W.: Phy. Rev. B. 36, 864 (1964)ADSCrossRefGoogle Scholar
  45. 44.
    P. Blaha, K. Schwarz, G. K. H. Medsen, D. Kvasnicka, J. Luitz, An augmented plane wave local orbitals program for calculating crystal properties, Karlheinz Schwartz (Ed.), WIEN2k, Techn. Universitad, Wien, Austria (2001)Google Scholar
  46. 45.
    J. P. Perdew, S. Burke, M. Ernzerhof.: Phys. Rev. Lett., 77 (1996) 3865ADSCrossRefGoogle Scholar
  47. 46.
    F. D. Murnaghan The compressibility of media under extreme pressures Proc. Natl. Acad. Sci. U. S. A., 30 (1944) 244Google Scholar
  48. 47.
    Berri, S.: J. Supercond. Nov. Magn. 29, 1309 (2016)CrossRefGoogle Scholar
  49. 48.
    Berri, S.: J. Supercond. Nov. Magn. 29, 2381 (2016)CrossRefGoogle Scholar
  50. 49.
    Berri, S.: J. Supercond. Nov. Magn. 31, 1941 (2018)CrossRefGoogle Scholar
  51. 50.
    Hong-Zong Lin, Chia-Yang Hu, Po-Han Lee, Albert Zhong-Ze Yan, Wen-Fang Wu, Yang-Fang Chen and Yin-Kuo Wang, Materials 12 (2019)1844Google Scholar
  52. 51.
    Zener, C.: Phys. Rev. 82, 403 (1951)ADSCrossRefGoogle Scholar
  53. 52.
    Anderson, P.W., Hasegawa, H.: Phys. Rev. 100, 675 (1955)ADSCrossRefGoogle Scholar
  54. 53.
    Trukhanov, S.V., Trukhanov, A.V., Szymczak, H., Szymczak, R., Baran, M.: J. Phys. Chem. Solids. 67, 675 (2006)ADSCrossRefGoogle Scholar
  55. 54.
    Bouadjemi, B., Bentata, S., Abbad, A., Benstaali, W., Bouhafs, B.: Solid State Commun. 168, 6 (2013)
  56. 55.
    Bouadjemi, B., Bentata, S., Abbad, A., Benstaali, W.: Solid State Commun. 207, 9 (2015)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Laboratory for Developing New Materials and their CharacterizationsUniversity of Setif 1SetifAlgeria
  2. 2.Department of Physics, Faculty of ScienceUniversity of M’silaM’silaAlgeria
  3. 3.Laboratory of Materials Physics and Its ApplicationsUniversity of M’silaM’silaAlgeria

Personalised recommendations