Advertisement

Effect of Sintering Temperature on the Superconductivity of Bi2Se3/FeSe0.5Te0.5Composites

  • J Zhang
  • K ZhaoEmail author
  • X S Yang
  • Y Zhao
Original Paper

Abstract

As a promising topological superconductor, Fe(Se0.5Te0.5) recently attracts interest from researchers, while Bi2Se3 has been considered one of the most important topological insulator materials. Therefore the Bi2Se3/FeSe0.5Te0.5 bulk composite could be interesting in demonstrating novel topological properties. We investigated crystalline, morphological, magnetic, and transport properties of Bi2Se3/FeSe0.5Te0.5 composite samples synthesized by the solid-state reaction method, and found that the elevated sintering temperature at the second step during the synthesis improves the crystallinity. All samples exhibit both superconductivity and ferromagnetism. Several indices of superconductivity, such as the transition temperature, change with increasing sintering temperature.

Keywords

Fe(Se0.5Te0.5Superconductivity Topological superconductor 

Notes

Funding Information

This work was supported by the Sichuan Applied Basic Research Project (Grant No. 2018JY0003), the National Key R&D Program of China (Grant No. 2017YFE0301402), and the National Natural Science Foundation of China (Grant No. 51877180).

References

  1. 1.
    Berkowski, M., Diduszko, R., Domukhovski, V.: Growth conditions, structure, and superconductivity of pure and metal-doped FeTe1-xSex single crystals. Supercond. Sci. Technol. 24, 1360–1363 (2012).  https://doi.org/10.1088/0953-2048/24/6/065011 CrossRefGoogle Scholar
  2. 2.
    Wu, M.K., Hsu, F.C., Yeh, K.W.: The development of the superconducting PbO-type β-FeSe and related compounds. Physica C. 469, 340–349 (2009).  https://doi.org/10.1016/j.physc.2009.03.022 ADSCrossRefGoogle Scholar
  3. 3.
    Hsu, F.C., Luo, J.Y., Yeh, K.W.: From the cover:superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. U. S. A. 105, 14262–14264 (2008).  https://doi.org/10.1073/pnas.0807325105 ADSCrossRefGoogle Scholar
  4. 4.
    Kamihara, Y., Watanabe, T., Hirano, M.: Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. Cheminform. 39, 3296–3297 (2010).  https://doi.org/10.1002/chin.200825008 CrossRefGoogle Scholar
  5. 5.
    Jaroszynski, J., Hunte, F., Balicas, L.: Upper critical fields and thermally-activated transport of NdFeAsO(0.7)F(0.3) single crystal. Phys. Rev. B. 78, 174523 (2008).  https://doi.org/10.1103/PhysRevB.78.174523 ADSCrossRefGoogle Scholar
  6. 6.
    Avci, S., Chmaissem, O., Allred, J.M.: Magnetically driven suppression of nematic order in an iron-based superconductor. Nat. Commun. 5, 3845 (2013).  https://doi.org/10.1038/ncomms4845 ADSCrossRefGoogle Scholar
  7. 7.
    Wang, Z., Zhang, P., Xu, G.: Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B. 92, 115119 (2015).  https://doi.org/10.1103/PhysRevB.92.115119 ADSCrossRefGoogle Scholar
  8. 8.
    Nadj-Perge, S., Drozdov, I.K., Li, J., Chen, H.: Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science. 346, 602–607 (2014).  https://doi.org/10.1126/science.1259327 ADSCrossRefGoogle Scholar
  9. 9.
    Sasaki, S., Kriener, M., Segawa, K.: Topological superconductivity in CuxBi2Se3. Phys. Rev. Lett. 107, 217001 (2011).  https://doi.org/10.1103/PhysRevLett.107.217001 ADSCrossRefGoogle Scholar
  10. 10.
    Fu, L., Kane, C.: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).  https://doi.org/10.1103/physrevlett.100.096407 ADSCrossRefGoogle Scholar
  11. 11.
    Kriener, M., Segawa, K., Ren, Z.: Bulk superconducting phase with a full energy gap in the doped topological insulator Cu(x)Bi2Se3. Phys. Rev. Lett. 106, 153–163 (2011).  https://doi.org/10.1103/PhysRevLett.106.127004 CrossRefGoogle Scholar
  12. 12.
    Lin, W., Li, Q., Sales, B.C.: Direct probe of interplay between local structure and superconductivity in FeTe0.55Se0.45. ACS Nano. 7(3), 2634–2641 (2013).  https://doi.org/10.1021/nn400012q CrossRefGoogle Scholar
  13. 13.
    Sun, Y., Taen, T., Yamada, T.: Multiband effects and possible Dirac fermions in Fe1+yTe0.6Se0.4. Phys. Rev. B. 89, 144512 (2014).  https://doi.org/10.1103/PhysRevB.89.144512 ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, P., Wang, Z., Wu, X.: Multiple topological states in iron-based superconductors. Nat. Phys. 15, 41–47 (2019).  https://doi.org/10.1038/s41567-018-0280-z CrossRefGoogle Scholar
  15. 15.
    Chen, M., Chen, X., Yang, H.: Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures. Sci. Adv. 4(6), eaat1084 (2018).  https://doi.org/10.1126/sciadv.aat1084 ADSCrossRefGoogle Scholar
  16. 16.
    Wang, M.X.: The coexistence of superconductivity and topological order in the Bi2Se3 thin films. Science. 336, 52–55 (2012).  https://doi.org/10.1126/science.1216466 ADSCrossRefGoogle Scholar
  17. 17.
    Xu, J.P., Liu, C., Wang, M.X.: Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 112, 217001 (2014).  https://doi.org/10.1103/PhysRevLett.112.217001 ADSCrossRefGoogle Scholar
  18. 18.
    Xu, S.Y.: Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor. Nat. Phys. 10, 943–950 (2014).  https://doi.org/10.1038/nphys3139 CrossRefGoogle Scholar
  19. 19.
    Xu, J.P.: Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 17001 (2015).  https://doi.org/10.1103/PhysRevLett.114.017001 ADSCrossRefGoogle Scholar
  20. 20.
    Sun, H.H.: Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).  https://doi.org/10.1103/PhysRevLett.116.257003 ADSCrossRefGoogle Scholar
  21. 21.
    Lei, H.C., Hu, R.W., Petrovic, C.: Critical fields, thermally activated transport, and critical current density of β-FeSe single crystals. Phys. Rev. B. 84, 014520 (2011).  https://doi.org/10.1103/PhysRevB.84.014520 ADSCrossRefGoogle Scholar
  22. 22.
    Cao, S., Shen, S., Chen, L.: Superconductivity at 14.6 K in Fe(SeTe) single crystal and the role of excess Fe. J. Appl. Phys. 110, 033914 (2011).  https://doi.org/10.1063/1.3622318 ADSCrossRefGoogle Scholar
  23. 23.
    He, Z., Bryan, R., Zheng, R.: Superconducting proximity effect in a topological insulator using Fe(Te, Se). Phys. Rev. B. 97, 224504 (2018).  https://doi.org/10.1103/PhysRevB.97.224504 ADSCrossRefGoogle Scholar
  24. 24.
    Singh, U.R., Warmuth, J., Markmann, V.: Structural and electronic properties of ultrathin FeSe films grown on Bi2Se3(0 0 0 1) studied by STM/STS. J. Phys. Condens. Matter. 29, 025004 (2017).  https://doi.org/10.1088/0953-8984/29/2/025004 ADSCrossRefGoogle Scholar
  25. 25.
    Cavallin, A., Sevriuk, V., Fischer, K.N.: Preparation and characterization of Bi2Se3(0001) and of epitaxial FeSe nanocrystals on Bi2Se3(0001). Surf. Sci. 646, 72–82 (2015).  https://doi.org/10.1016/j.susc.2015.09.001 ADSCrossRefGoogle Scholar
  26. 26.
    Zhang, H., Liu, C.X., Qi, X.L.: Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).  https://doi.org/10.1038/nphys1270 CrossRefGoogle Scholar
  27. 27.
    Cui, H., Liu, H., Li, X.: Synthesis of Bi2Se3 thermoelectric nanosheets and nanotubes through hydrothermal co-reduction method. J. Solid State Chem. 177, 4001–4006 (2004).  https://doi.org/10.1016/j.jssc.2004.06.042 ADSCrossRefGoogle Scholar
  28. 28.
    Ma, F., Ji, W., Hu, J.: First-principles calculations of the electronic structure of tetragonal alpha-FeTe and alpha-FeSe crystals: evidence for a Bicollinear antiferromagnetic order. Phys. Rev. Lett. 102, 177003 (2009).  https://doi.org/10.1103/PhysRevLett.102.177003 ADSCrossRefGoogle Scholar
  29. 29.
    Horigane, K., Takeshita, N., Lee, C.H.: First investigation of pressure effects on transition from superconductive to metallic phase in FeSe0.5Te0.5. J. Phys. Soc. Jpn. 78, 988–991 (2009).  https://doi.org/10.1143/JPSJ.78.063705 CrossRefGoogle Scholar
  30. 30.
    Lv, L., Zhang, M., Wei, Z.T.: Enhanced contribution of surface state and modification of magnetoresistance in FexBi2−xSe3 topological insulator crystals. J. Appl. Phys. 113, 043923 (2013).  https://doi.org/10.1063/1.4790310 ADSCrossRefGoogle Scholar
  31. 31.
    Liu, H.T., Dai, J., Zhang, J.J.: Solvothermal synthesis of Bi2Se3 hexagonal nanosheet crystals. Adv. Mater. Res. 236-238, 1712–1716 (2011).  https://doi.org/10.4028/www.scientific.net/AMR.236-238.1712 CrossRefGoogle Scholar
  32. 32.
    Sultana, R., Rani, P., Hafiz, A.K.: An intercomparison of the upper critical fields (Hc2) of different superconductors—YBa2Cu3O7, MgB2, NdFeAsO0.8F0.2, FeSe0.5Te0.5 and Nb2PdS5. J. Supercond. Nov. Magn. 29, 1399–1404 (2016).  https://doi.org/10.1007/s10948-016-3507-1 CrossRefGoogle Scholar
  33. 33.
    Hacisalihoglu, M.Y., Yanmaz, E.: Effect of substitution and heat treatment route on polycrystalline FeSe0.5Te0.5 superconductors. J. Supercond. Nov. Magn. 26, 2369–2374 (2013).  https://doi.org/10.1007/s10948-012-1820-x CrossRefGoogle Scholar
  34. 34.
    Noji, T., Suzuki, T., Abe, H., Adachi, T., Kato, M., Koike, Y.: Growth, annealing effects on superconducting and magnetic properties, and anisotropy of FeSe1-xTex (0.5≤x≤1) single crystals. J. Phys. Soc. Jpn. 79, 084711 (2010).  https://doi.org/10.1143/JPSJ.79.084711 ADSCrossRefGoogle Scholar
  35. 35.
    Patterson, A.L.: The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939).  https://doi.org/10.1103/PhysRev.56.978 ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Schuster, W., Mikler, H., Komarek, K.L., Monatsh: Transition metal-chalcogen systems, VII.: the iron-selenium phase diagram. Chem. 110, 1153–1170 (1979).  https://doi.org/10.1007/BF00910963 CrossRefGoogle Scholar
  37. 37.
    Rousseau, D., Bauman, R.P., Porto, S.: Normal mode determination in crystals. J. Raman Spectrosc. 10, 253–290 (1981).  https://doi.org/10.1002/jrs.1250100152 ADSCrossRefGoogle Scholar
  38. 38.
    Kumar, P., Kumar, A., Saha, S.: Anomalous Raman scattering from phonons and electrons of superconducting. Solid State Commun. 150, 557–560 (2010) arXiv: 1004.1612ADSCrossRefGoogle Scholar
  39. 39.
    Okazaki, K., Sugai, S., Niitaka, S.: Phonon, two-magnon, and electronic Raman scattering of Fe1+yTe1-xSex. Phys. Rev. B. 83, 184–190 (2011).  https://doi.org/10.1103/PhysRevB.83.035103 CrossRefGoogle Scholar
  40. 40.
    Xia, T.L., Hou, D., Zhao, S.C.: Raman phonons of α-FeTe and Fe1.03Se0.3Te0.7 single crystals. Phys. Rev. B. 79, 140510 (2009).  https://doi.org/10.1103/PhysRevB.79.140510 ADSCrossRefGoogle Scholar
  41. 41.
    Qin, Z., Zhang, C., O’Malley, S.: Crystal field excitations in the Raman spectra of FeSe1-x. Solid State Commun. 150, 768–771 (2010).  https://doi.org/10.1016/j.ssc.2010.01.024 ADSCrossRefGoogle Scholar
  42. 42.
    Um, Y.J., Subedi, A., Toulemonde, P.: Anomalous dependence of c-axis polarized Fe B1g phonon mode with Fe and Se concentrations in Fe1+yTe1−xSex. Phys. Rev. B. 85, 064519 (2012).  https://doi.org/10.1103/PhysRevB.85.064519 ADSCrossRefGoogle Scholar
  43. 43.
    Fabitha, K., Ramachandra Rao, M.S., Muralidhar, M.: Effect of Ag addition on microstructure and Raman vibrational modes of bulk FeSe. J. Supercond. Nov. Magn. 30, 3117–3122 (2017).  https://doi.org/10.1007/s10948-017-4117-2 CrossRefGoogle Scholar
  44. 44.
    de Siqueira, F.N., Monteiro, J.F.H.L., Jurelo, A.R.: Effects of Ni substitution in FeSe0.5Te0.5 superconductor. Braz. J. Phys. 49, 1–8 (2019).  https://doi.org/10.1007/s13538-019-00679-0 CrossRefGoogle Scholar
  45. 45.
    Chen, N., Liu, Y., Ma, Z.: Improvement in structure and superconductivity of bulk FeSe0.5Te0.5 superconductors by optimizing sintering temperature. Scr. Mater. 112, 152–155 (2016).  https://doi.org/10.1016/j.scriptamat.2015.09.039 CrossRefGoogle Scholar
  46. 46.
    Lim, E.H.H., Tan, K.Y., Liew, J.Y.C.: Synthesis of bulk FeTe 1− x, Se, x, ( x, = 0.1–0.5) at ambient pressure. J. Supercond. Nov. Magn. 28, 2839–2845 (2015).  https://doi.org/10.1007/s10948-015-3108-4 CrossRefGoogle Scholar
  47. 47.
    Zargar, R.A., Pal, A., Hafiz, A.K.: Structural, electrical and magnetic behaviour of FeTe0.5Se0.5 superconductor. J. Supercond. Nov. Magn. 27, 897–901 (2014).  https://doi.org/10.1007/s10948-014-2507-2 CrossRefGoogle Scholar
  48. 48.
    Nilay, K.G., Ekicibil, A., Bekir, Ö.: The annealing effects in the iron-based superconductor FeTe0.8Se0.2 prepared by the self-flux method. J. Supercond. Nov. Magn. 27, 2691–2697 (2014).  https://doi.org/10.1007/s10948-014-2797-4 CrossRefGoogle Scholar
  49. 49.
    Gao, M.R., Lin, Z.Y., Jun, J.: Selective synthesis of Fe7Se8 polyhedra with exposed high-index facets and Fe7Se8 nanorods by a solvothermal process in a binary solution and their collective intrinsic properties. Chem-Eur J. 17, 5068–5075 (2011).  https://doi.org/10.1002/chem.201002203 CrossRefGoogle Scholar
  50. 50.
    El-Sayed, K., Mohamed, M.B., Heiba, Z.K.: Structure, magnetic and dielectric properties of nanocrystalline Se-xFe. Superlattice. Microst. 75, 311–323 (2014).  https://doi.org/10.1016/j.spmi.2014.07.005 ADSCrossRefGoogle Scholar
  51. 51.
    R. Sabirianov, N. Alaqtash, D. Sengupta. Effect of 3d-metal doping on magnetic properties of Fe3 Se4, Aps March Meeting 60 (2015)Google Scholar
  52. 52.
    C. V. Tomy, G. Balakrishnan, M. R. Lees, Superconducting and magnetic properties of Fe-Se-Te compounds, Aps March Meeting. (2009)Google Scholar
  53. 53.
    Ulbrich, K.F., Campos, C.E.M.: Nanosized tetragonal b-FeSe phase obtained by mechanical alloying: structural, microstructural, magnetic and electrical characterization. RSC Adv. 8, 8190–8198 (2018).  https://doi.org/10.1039/C7RA13473H CrossRefGoogle Scholar
  54. 54.
    Viennois, R., Giannini, E., Marel, D., Cerny, R.: Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe1+xTe1-ySey. J. Solid State Chem. 183, 769–775 (2010).  https://doi.org/10.1016/j.jssc.2010.01.024 ADSCrossRefGoogle Scholar
  55. 55.
    Sala, A., Palenzona, A., Bernini, C., Caglieris, F., Cimberle, M., Ferdeghini, C., Lamura, G., Martinelli, A., Pani, M., Putti, M.: The role of Fe deficiency in FeySe0.5Te0.5 samples prepared by a melting process. Physica C Supercond. 494, 69–73 (2013).  https://doi.org/10.1016/j.physc.2013.05.026 ADSCrossRefGoogle Scholar
  56. 56.
    Mele, P.: Superconducting properties of iron chalcogenide thin film. Sci. Technol. Adv. Mater. 13, 054301 (2012).  https://doi.org/10.1088/1468-6996/13/5/054301 CrossRefGoogle Scholar
  57. 57.
    Liu, J., Li, C., Zhang, S., Feng, J., Zhang, P., Zhou, L.: The phase evolution mechanism in Fe(Se, Te) system. Physica C Supercond.. 527, 68–73 (2016).  https://doi.org/10.1016/j.physc.2016.06.006 ADSCrossRefGoogle Scholar
  58. 58.
    Sun, Y., Shi, Z., Tamegai, T.: Review of annealing effects and superconductivity in Fe1+yTe1-xSex superconductors. Supercond. Sci. Technol. 32(10), 103001 (2019).  https://doi.org/10.1088/1361-6668/ab30c2 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySouthwest Jiaotong UniversityChengduChina
  2. 2.Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Superconductivity and New Energy R&D CenterSouthwest Jiaotong UniversityChengduChina

Personalised recommendations