Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3579–3585 | Cite as

Large Magnetic Entropy Change in Pr2/3Sr1/3MnO3-CuO Composite at Room Temperature

  • L. FkharEmail author
  • O. MounkachiEmail author
  • K. El Maalam
  • M. Hamedoun
  • A. Mahmoud
  • F. Boschini
  • A. El kenz
  • M. Ait Ali
  • E. K. Hlil
  • Y. Xiao
  • A. Benyoussef
Original Paper

Abstract

We report in this paper the impact of copper oxide (CuO) on the structural, magnetic, and magnetocaloric properties of Pr2/3Sr1/3MnO3 (PSMO) material. Our samples were synthesized by conventional solid-state reaction. The phase formation with no impurities was verified using the X-ray diffraction (XRD). The magnetic properties measured by Magnetic Properties Measurement System (MPMS) show the impact of the AFM CuO semiconductor on the magnetization and the transition temperature of the composite. The magnetic entropy changes were calculated from the isothermal curve of the magnetization as a function of the magnetic field. It is found that a small amount of copper oxide is enough to enhance the magnetocaloric properties of our materials.

Keywords

Composite Magnetic properties Perovskite manganites Magnetocaloric effect Magnetic entropy change Relative cooling power 

Notes

Funding Information

This work was supported by the MESRSFC (Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la Formation des Cadres) in the Framework of the national program PPR under contract no. PPR/2015/57. A. Mahmoud is grateful to the Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT n 1510399.

References

  1. 1.
    Shen, B.G., Sun, J.R., Hu, F.X., Zhang, H.W., Cheng, Z.H.: Recent progress in exploring magnetocaloric materials. Adv. Mater. 21(45), 4545–4564 (2009)CrossRefGoogle Scholar
  2. 2.
    Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P., Feng, D.: Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett. 78(6), 1142–1145 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Heo, S.N., Kim, G.W., Koo, B.H.: Study of magnetic entropy change in La0.65Sr0.35Cu0.1Mn0.9O3 complex perovskite. J. Electroceram. 46–50 (2013)Google Scholar
  4. 4.
    Choithrani, R., Bhat, M.A., Gaur, N.K.: Influence of silver doping on the magnetoresistance and temperature coef fi cient of resistance in Pr0.67Sr0.33MnO3. J. Magn. Magn. Mater. 361, 19–24 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Kawasaki, M., Izumi, M., Konishi, Y., Manako, T., Tokura, Y.: Perfect epitaxy of perovskite manganite for oxide spin-electronics. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 63(1), 49–57 (1999)CrossRefGoogle Scholar
  6. 6.
    Balcells, L., Calvo, E., Fontcuberta, J.: Room-temperature anisotropic magnetoresistive sensor based on manganese perovskite thick films. J. Magn. Magn. Mater. 242–245(PART II), 1166–1168 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Brück, E., Tegus, O., Thanh, D.T.C., Buschow, K.H.J.: Magnetocaloric refrigeration near room temperature (invited). J. Magn. Magn. Mater. 310(2 SUPPL. PART 3), 2793–2799 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Phan, M.H., Yu, S.C.: Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Pecharsky, V.K., Gschneidner, K.A.: Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K. Appl. Phys. Lett. 70(70), 3299 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Pecharsky, K.A., Gschneidner, V.K.: Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). J. Magn. Magn. Mater. 167(3), L179–L184 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    Kaštil, J., Javorský, P., Kamarád, J., Šantavá, E.: Magnetocaloric effect of Gd-Tb alloys: influence of the sample shape anisotropy. Appl. Phys. A Mater. Sci. Process. 104(1), 205–209 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Balli, M., Fruchart, D., Gignoux, D.: The LaFe11.2Co0.7Si1.1Cx carbides for magnetic refrigeration close to room temperature. Appl. Phys. Lett. 92(23), 17–20 (2008)CrossRefGoogle Scholar
  13. 13.
    Pandey, S., et al.: Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia. Int. J. Hyperth. 0(0), 000 (2017)Google Scholar
  14. 14.
    El Maalam, K., et al.: Magnetocaloric properties of zinc-nickel ferrites around room temperature. J. Supercond. Nov. Magn. 2–6 (2017)Google Scholar
  15. 15.
    Aryal, A., Quetz, A., Pandey, S., Dubenko, I., Stadler, S., Ali, N.: Magnetocaloric effects and transport properties of rare-earth (R ¼ La, Pr, Sm) doped Ni50-xRxMn35Sn15 Heusler alloys. J. Alloys Compd. 717, 254–259 (2017)CrossRefGoogle Scholar
  16. 16.
    Selmi, A., M’Nassri, R., Cheikhrouhou-Koubaa, W., Boudjada, N.C., Cheikhrouhou, A.: The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1-xCoxO3manganites. Ceram. Int. 41(6), 7723–7728 (2015)CrossRefGoogle Scholar
  17. 17.
    Chand, U., Yadav, K., Gaur, A., Varma, G.D.: Effect of different synthesis techniques on structural, magnetic and magneto-transport properties of Pr0.7Sr0.3MnO3 manganite. J. Rare Earths. 28(5), 760–764 (2010)CrossRefGoogle Scholar
  18. 18.
    Ravi, S., Karthikeyan, A.: Effect of calcination temperature on La0.7Sr0.3MnO3 nanoparticles synthesized with modified sol-gel route. Phys. Procedia. 54(C), 45–54 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Romero, M., et al.: Effect of lanthanide on the microstructure and structure of LnMn0.5Fe0.5O3 nanoparticles with Ln=La, Pr, Nd, Sm and Gd prepared by the polymer precursor method. J. Solid State Chem. 221, 325–333 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Tejaswini, P.D.B., Daivajna, M.D., Thrupthi: Structural, electrical, magnetic and thermal properties of Pr0.8-xDyxSr0.2MnO3with (x = 0, 0.2 and 0.25). J. Alloys Compd. 741, 97–105 (2018)CrossRefGoogle Scholar
  21. 21.
    Chen, W., et al.: Magnetocaloric effect in Nd doped perovskite La0.7-xNd xBa0.3MnO3 polycrystalline near room temperature. J. Alloys Compd. 395(1–2), 23–25 (2005)CrossRefGoogle Scholar
  22. 22.
    Nasri, M., Khelifi, J., Triki, M., Dhahri, E., Hlil, E.K.: Impact of CuO phase on magnetocaloric and magnetotransport properties of La0.6Ca0.4MnO3 ceramic composites. J. Alloys Compd. 678, 427–433 (2016)CrossRefGoogle Scholar
  23. 23.
    Anwar, M.S., Ahmed, F., Danish, R., Koo, B.H.: Impact of Co3O4 phase on the magnetocaloric effect and magnetoresistance in La0.7Sr0.3MnO3/Co3O4 and La0.7Ca0.3MnO3/Co3O4 ceramic composites. Ceram. Int. 41(1), 631–637 (2014)CrossRefGoogle Scholar
  24. 24.
    Banerjee, S.K.: On a generalized approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)ADSCrossRefGoogle Scholar
  25. 25.
    R Caballero-Flores et al., “Magnetocaloric effect and critical behavior in Pr0.5Sr0.5MnO3: an analysis of the validity of the Maxwell relation and the nature of the phase transitions,” J. Phys. Condens. Matter 26 (2014) 286001 (10pp)Google Scholar
  26. 26.
    Khlifi, M., Bejar, M., Sadek, O.E.L., Dhahri, E., Ahmed, M.A., Hlil, E.K.: Structural , magnetic and magnetocaloric properties of the lanthanum deficient in La0.8Ca0.2 − x x MnO3 ( x = 0 – 0.20) manganites oxides. J. Alloys Compd. 509(27), 7410–7415 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. Fkhar
    • 1
    • 2
    Email author
  • O. Mounkachi
    • 2
    Email author
  • K. El Maalam
    • 2
  • M. Hamedoun
    • 2
  • A. Mahmoud
    • 3
  • F. Boschini
    • 3
  • A. El kenz
    • 4
  • M. Ait Ali
    • 1
  • E. K. Hlil
    • 5
  • Y. Xiao
    • 6
  • A. Benyoussef
    • 2
    • 4
    • 7
  1. 1.Coordination Chemistry Laboratory, Cadi Ayyad UniversityFaculty of Sciences Semlalia (UCA-FSSM)MarrakechMorocco
  2. 2.Materials and Nanomaterials CenterMAScIR FoundationRabatMorocco
  3. 3.GREENMAT, CESAM, Institute of Chemistry B6University of LiegeLiègeBelgium
  4. 4.Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of scienceMohammed V UniversityRabatMorocco
  5. 5.Institut Néel, CNRS, Université Grenoble AlpesGrenoble Cedex 9France
  6. 6.Jülich Centre for Neutron Science JCNS und Peter Grünberg Institut PGI JCNS-2, PGI-4Streumethoden Forschungszentrum Jülich GmbHJülichGermany
  7. 7.Hassan II Academy of Science and TechnologyRabatMorocco

Personalised recommendations