Advertisement

Superconducting Properties of LaSn3 Under Positive Hydrostatic Pressure

  • Surinder SinghEmail author
  • Ranjan Kumar
Original Paper
  • 87 Downloads

Abstract

Superconducting properties of LaSn3 were calculated at ambient and applied positive hydrostatic pressure. The lattice structure of LaSn3 remained stable at ambient and all applied positive hydrostatic pressures due to the positive frequency of phonon dispersion plots for all modes of vibrations. The electron-phonon coupling constant (λep) and superconducting transition temperature (Tc) show an almost linear decrease with positive hydrostatic pressure. The majority of electron‑electron interaction is mediated by acoustic modes of vibration in comparison to optical modes of vibrations.

Keywords

Positive hydrostatic pressure Eliashberg spectral function Electron-phonon coupling constant Phonon linewidths Migdal-Eliashberg theory Logarithmic phonon frequency 

Notes

Acknowledgments

Calculations for LaSn3 at ambient pressure and all applied hydrostatic pressure were done at high performance computing facility (HPC) at IUAC, Delhi, and at National Param Supercomputing Facility (NPSF) at CDAC, Pune.

References

  1. 1.
    Uzunok, H.Y., Tütüncü, H.M., Karaca, E., Başoǧlu, A., Srivastava, G.P.: Philos. Mag. Lett. 98, 375–391 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    Ram, S., Kanchana, V., Vaitheeswaran, G., Svane, A., Dugdale, S.B., Christensen, N.E.: Phys. Rev. B. 85, 174531 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Cao, J.J., Gou, X.F., Wang, T.E.: Comput. Mater. Sci. 150, 491–499 (2018)CrossRefGoogle Scholar
  4. 4.
    Gambino, R.J., Stemple, N.R., Toxen, A.M.: J. Phys. Chem. Solids. 29, 295 (1968)ADSCrossRefGoogle Scholar
  5. 5.
    Stassis, C., Zarestky, J., Loong, C.K., McMasters, O.D., Nicklow, R.M.: Phys. Rev. B. 23, 2227 (1981)ADSCrossRefGoogle Scholar
  6. 6.
    Bazhirov, T., Noffsinger, J., Cohen, M.L.: Phys. Rev. B. 82, 184509 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Chan, K.T., Malone, B.D., Cohen, M.L.: Phys. Rev. B. 86, 094515 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Pogrebnyakov, A.V., Redwing, J.M., Raghavan, S., Vaithyanathan, V., Schlom, D.G., Xu, S.Y., Li, Q., Tenne, D.A., Soukiassian, A., Xi, X.X., Johannes, M.D., Kasinathan, D., Pickett, W.E., Wu, J.S., Spence, J.C.H.: Phys. Rev. Lett. 93, 147006 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Hur, N., Sharma, P.A., Guha, S., Cieplak, M.Z., Werder, D.J., Horibe, Y., Chen, C.H., Cheong, S.W.: Appl. Phys. Lett. 79, 4180 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    De Long, L.E., Maple, M.B., McCallum, R.W., Woolf, L.D., Shelton, R.N., Johnston, D.C.: J. Low Temp. Phys. 34, 445–485 (1979)ADSCrossRefGoogle Scholar
  11. 11.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 106, 162 (1957)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Phys. Rev. 108, 1175 (1957)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Eliashberg, G.M.: Zh. Eksp. Teor. Fiz. 38, 966 (1960)Google Scholar
  14. 14.
    Migdal, A.B.: Zh. Eksp. Teor. Fiz. 34, 1438 (1958)Google Scholar
  15. 15.
    Allen, P.B.: Phys. Rev. B. 6, 2577 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    Allen, P.B., Dynes, R.C.: Phys. Rev. B. 12, 905 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    McMillan, W.L.: Phys. Rev. 167, 331 (1968)ADSCrossRefGoogle Scholar
  18. 18.
    Landelli, A., Palenzona, A.: Handbook on the physics and chemistry of rare earths 2. North-Holland, Amsterdam (1979)Google Scholar
  19. 19.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    Singh, S., Kumar, R.: J. Supercond. Nov. Magn. 31, 943–1278 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of PhysicsPanjab UniversityChandigarhIndia
  2. 2.Department of PhysicsKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations