Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3449–3455 | Cite as

Rapid Epitaxial Growth of GdBa2Cu3O7-σ Films by Dilute Co Doping

  • Baolei Huo
  • Wentao T. WangEmail author
  • Lian LiuEmail author
  • Mingjiang Wang
  • Xue Yang
  • Gansong Yang
  • Zhengjian Tian
  • Yong Zhao
Original Paper


The effect of dilute Co doping on the epitaxial growth of GdBCO films was investigated by self-developed fluorine-free polymer-assisted metal-organic deposition (PA-MOD) method. Under the same sintering heat treatment, dilute Co doping dramatically improved the crystallinity, microstructure, and critical current density (Jc) of GdBCO films. High Jc of 4.0 MA/cm2 at 77 K and self-field was obtained in Co-doped film after only sintering for 30 min, which is eight times of the Jc for the undoped film. Also, Co-doped GdBCO film sintered for as short as 20 min still possesses a high Jc of 1.5 MA/cm2, whereas the Jc is 0 for the similarly sintered pure film. These results suggest that dilute Co doping facilitates the epitaxial growth of the high-performance GdBCO film.


GdBCO superconducting films Fluorine-free MOD Co doping Epitaxial growth 


Funding information

This work was supported by the Field Foundation of Pre-Research on Equipment (grant number 61409230502); the Program of International S&T Cooperation (grant number 2013DFA51050), the National Nature Science Foundation of China (grant numbers 51271155, 51377138, 51702265), the Fundamental Research Funds for the Central Universities (grant numbers 2682015ZT11, 2019 XJ03), and the Science and Technology Project in Sichuan Province (grant number 2017JY0057).


  1. 1.
    Song, S.H., Ko, K.P., Ko, R.K., Song, K.J., Moon, S.H., Yoo, S.I.: Physica C. 497(500), 463–465 (2007)Google Scholar
  2. 2.
    Zhang, H., Yang, J., Wang, S.M., Wu, Y.Y., Lv, Q.L., Li, S.A.: Physica C. 54(56), 499 (2014)Google Scholar
  3. 3.
    Aytug, T., Paranthaman, M., Specht, E.D., Zhang, Y., Kim, K., et al.: Supercond. Sci. Technol. 014005(7pp), 23 (2010)Google Scholar
  4. 4.
    Li, W., Li, G.X., Zhang, B.L., Chou, P.C., Liu, S.P., Ma, X.Y.: Physica C. 501, 1–6 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Motoki, T., Ikeda, S., Honda, G., Nagaishi, T., Nakamura, S., Shimoyama, J.: Appl. Phys. Express. 10, 023102 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Motoki, T., Shimoyama, J., Ogino, H., Kishio, K., Roh, J., Tohei, T., Ikuhara, Y., et al.: Supercond. Sci. Technol. 015006(7pp), 29 (2016)Google Scholar
  7. 7.
    Feng, F., Huang, R.X., Qu, T.M., Zhu, Y.P., Lu, H.Y., Zhang, X.S., et al.: IEEE Trans. Appl. Supercond. 26, 1–5 (2016)CrossRefGoogle Scholar
  8. 8.
    Jin, L.H., Lu, Y.F., Yan, W.W., Yu, Z.M., Wang, Y., Li, C.S.: J. Alloys Compd. 509, 3353–3356 (2011)CrossRefGoogle Scholar
  9. 9.
    Iguchi, T., Araki, T., Yamada, Y., Hirabayashi, I., Ikuta, H.: Supercond. Sci. Technol. 15, 1415–1420 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Su, J.H., Joshi, P.P., Chintamaneni, V., Mukhopadhyay, S.M.: Supercond. Sci. Technol. 1496, 18 (2005)Google Scholar
  11. 11.
    Ishiwata, Y., Shimoyama, J., Motoki, T., Kishio, K., Nagaishi, T.: IEEE Trans. Appl. Supercond. 1, 23 (2013)Google Scholar
  12. 12.
    Tang, X., Zhao, Y., Wu, W., Andersen, N.H., Grivel, J.-C.: J. Eur. Ceram. Soc. 1761, 35 (2015)Google Scholar
  13. 13.
    Liu, L., Wang, W.T., Huo, B.L., Wang, M.J., Yu, Z., Yang, X., Zhang, Y., Cheng, C.H., Zhao, Y.: Surf. Eng. 1–6 (2017)Google Scholar
  14. 14.
    Lee, J.W., Shin, G.M., Moon, S.H., Yoo, S.I.: Physica C. 470, 1253–1256 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Zhao, Y., Torres, P., Tang, X., Norby, P., Grivel, J.-C.: Inorg. Chem. 54, 10232–10238 (2015)CrossRefGoogle Scholar
  16. 16.
    Wu, W., Feng, F., Zhao, Y., Tang, X., Xue, Y.R., Shi, K., et al.: Supercond. Sci. Technol. 055006(10pp), 27 (2014)Google Scholar
  17. 17.
    Wang, W.T., Li, G., Pu, M.H., Sun, R.P., Zhou, H.M., Zhang, Y., et al.: Physica C. 468, 1563–1566 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Wang, W.T., Pu, M.H., Yang, Y., Zhang, H., Cheng, C.H., Zhang, Y.: Physica C. 470, 1261–1265 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, W.T., Pu, M.H., Wang, W.W., Lei, M., Cheng, C.H., Zhao, Y.: Phys Status Solidi A. 208, 2166–2169 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Wang, W.T., Pu, M.H., Lei, M., Zhang, H., Wang, Z., Cheng, C.H., Zhao, Y.: Physica C. 493, 104–108 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Vermeir, P., Cardinael, I., Schaubroeck, J., Verbeken, K., Bäcker, M., Lommens, P., Knaepen, W., D’haen, J., De Buysser, K., Van Driessche, I.: Inorg. Chem. 49, 4471–4477 (2010)CrossRefGoogle Scholar
  22. 22.
    Vermeir, P., Feys, J., Schaubroeck, J., Verbeken, K., Lommens, P., Van Driessche, I.: Mater. Res. Bull. 47, 4376–4382 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Baolei Huo
    • 1
    • 2
  • Wentao T. Wang
    • 1
    • 2
    Email author
  • Lian Liu
    • 1
    • 2
    Email author
  • Mingjiang Wang
    • 2
  • Xue Yang
    • 1
    • 2
  • Gansong Yang
    • 1
    • 2
  • Zhengjian Tian
    • 1
    • 2
  • Yong Zhao
    • 2
    • 3
  1. 1.Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China), School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), School of Electrical EngineeringSouthwest Jiaotong UniversityChengduChina
  3. 3.College of Physics and EnergyFujian Normal UniversityFuzhouChina

Personalised recommendations