Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3601–3607 | Cite as

Investigation on Electronic Structures and Magnetic Properties of (Mn, Ga) Co-doped SnO2

  • Long Lin
  • Pengtao Wang
  • Jingtao Huang
  • Weiyang YuEmail author
  • Hualong Tao
  • Linghao Zhu
  • Zhanying Zhang
Original Paper


The electronic structures and magnetic properties of (Mn, Ga) co-doped SnO2 are studied by the first-principles calculations in full-potential linearized augmented plane wave formalism within generalized gradient approximations. We found that the doped system favors the ferromagnetic state and room-temperature ferromagnetism can be expected in it. The origin of ferromagnetism can be attributed to p-d exchange interactions as Mn-O-Mn. Ga acts as acceptor in (Mn, Ga) co-doped SnO2 host and can donate one hole, increasing the carrier concentration and thus leading to a more stable ferromagnetic state. These results suggest a recipe obtaining promising dilute magnetic semiconductor by doping nonmagnetic elements in SnO2 matrix.


First principles Dilute magnetic semiconductors Electronic structure SnO2 



Computational resources have been provided by the Henan Polytechnic University high-performance grid computing platform.

Funding Information

This work was supported by the Key Projects of NSFC-Henan Joint Fund (U1704255), the National Natural Science Foundation of China (11804081), the Natural Science Foundation of Henan Province (182300410288), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (CXTD2017089), Science and Technology of Henan Province (182102210305), the Henan Postdoctoral Science Foundation (Lin’s), the Program for Innovative Research Team of Henan Polytechnic University (T2016-2), the Key Research Project for the Universities of Henan Province (19A140009), the Doctoral Foundation of Henan Polytechnic University (B2018-38), and the Open Project of Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province (LRME201601).


  1. 1.
    Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zincblende magnetic semiconductors. Science. 287, 10191022 (2000)CrossRefGoogle Scholar
  2. 2.
    Wan, K.P., Ortegahertogs, R.J., Moodera, J.S., Punnoose, A., Seehra, M.S.: Semiconducting and ferromagnetic behavior of sputtered co-doped TiO2 thin films above room temperature. J. Appl. Phys. 91, 8093–8095 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, Z., Wang, W., Tang, J., Tung, L.D., Spinu, L., Zhou, W.: Extraordinary hall effect and ferromagnetism in Fe-doped reduced rutile. Appl. Phys. Lett. 83, 518–520 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Schwartz, D.A., Kittilstved, K.R., Gamelin, D.R.: Above-room-temperature ferromagnetic Ni2+ -doped ZnO thin films prepared from colloidal diluted magnetic semiconductor quantum dots. Appl. Phys. Lett. 85, 1395–1397 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    SB, O., RJ, C., JR, S.: High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO2. Phys. Rev. Lett. 91, 077205 (2003)CrossRefGoogle Scholar
  6. 6.
    Hong, N.H., Sakai, J., Prellier, W., Hassini, A.: Trans-parent Cr-doped SnO2 thin films: ferromagnetism beyond room temperature with a giant magnetic moment. J. Phys. Condens. Matter. 17, 1697–1702 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Vaja, F., Ficai, D., Ficai, A., Oprea, O., Guran, C.: Multifunctional advanced coatings based on ZnO/M obtained by nanocasting method. J. Optoelectron. Adv. Mater. 15, 107–113 (2013)Google Scholar
  8. 8.
    Nabi, B., Helbert, A.L., Brisset, F., Andr, G., Waeckerl, T., Baudin, T.: Effect of recrystallization and degree of order on the magnetic and mechanical properties of soft magnetic FeCoC2V alloy. Mater. Sci. Eng. A. 578, 215–221 (2013)CrossRefGoogle Scholar
  9. 9.
    Wei, W., Dai, Y., Guo, M., Zhang, Z., Huang, B.: Effects of oxygen vacancy on the magnetic properties of Cr-doped SnO2: density functional investigation. J. Solid State Chem. 183, 3073–3077 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Bouamra, F., Boumeddiene, A., Rrat, M., Belkhir, H.: First principles calculations of magnetic properties of Rh doped SnO2(110) surfaces. Appl. Surf. Sci. 269, 41–44 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Rkhioui, A., Masrour, R., Bahmad, L., Hamedoun, M., Benyoussef, A.: Study of electronic and magnetic properties of ZnxMxO (M = Mn and Cr) by ab initio calculations. J. Supercond. Nov. Magn. 26, 3469–3474 (2013)CrossRefGoogle Scholar
  12. 12.
    Rama, N., Rao, M.S.R.: Synthesis and study of electrical and magnetic properties of vanadium oxide micro and nanosized rods grown using pulsed laser deposition technique. Solid State Commun. 150, 1041–1044 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Torres, C.E.R., Errico, L., Golmar, F., The role of the dopant in the magnetism of Fe-doped SnO2 films: J. Magn. Magn. Mater. 316, e219–e222 (2007)CrossRefGoogle Scholar
  14. 14.
    Kim, H.S., Lei, B., Dionne, G.F., Ross, C.A., Paik, H.J.: Structure, magnetic and optical properties, and hall effect of Co- and Fe-doped SnO2 films. Phys. Rev. B. 7750, 85–70 (2008)Google Scholar
  15. 15.
    Chaib, H., Khalal, A., El-Frikhe, E.S., Nafidi, A., Charifi, H., Taleb, T.A., Tirbiyine, A.: Electrical properties and Pockels effect in BaTiO3 / SrTiO3 superlattices. Opt. Quant. Electron. 46, 179–192 (2014)CrossRefGoogle Scholar
  16. 16.
    Sabergharesou, T., Wang, T., Ju, L., Radovanovic, P.V.: Electronic structure and magnetic properties of sub-3 nm diameter Mn-doped SnO2 nanocrystals and nanowires. Appl. Phys. Lett. 103, 1174-R (2013)CrossRefGoogle Scholar
  17. 17.
    Duan, L.B., Rao, G.H., Yu, J., Wang, Y.C., Liu, G.Y., Liang, J.K.: Structural and magnetic properties of chem and ically synthesized Sn1 xMnxO2 nanocrystalline powders. J. Appl. Phys. 101, 1019 (2007)Google Scholar
  18. 18.
    Gopinadhan, K., Kashyap, S.C., Pandya, D.K., Chaudhary, S.: High temperature ferromagnetism in Mn-doped SnO2 nanocrystalline thin films. J. Appl. Phys. 102, 113513 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Zhang, Y.L., Tao, X.M., Tan, M.Q.: Origin of ferromagnetism in Zn-doped SnO2 from first-principles study. J. Magn. Magn. Mater. 325, 7–12 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Lamrani, A.F., Belaiche, M., Benyoussef, A., Kenz, E.: Electronic structures and ferromagnetism of SnO2 (rutile) doped with double-impurities: first-principles calculations. J. Appl. Phys. 115, 4020–L418 (2014)Google Scholar
  21. 21.
    Xiao, W.Z., Luo, H., Yang, J.Y., Shuang, D.: Ferromagnetism in Rh-doped SnO2 from first-principles calculation. Eur. Phys. J. B. 80, 337–341 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Hong, N.H., Shaidiuk, V., Atabaev, T.S., Ciftja, O., Kurisu, M., Kim, H.K., Hwang, Y.H.: Effects of Al - Mn co-doping on magnetic properties of semiconducting oxide thin films. Phys. Status Solidi. 251, 2274–2278 (2015)CrossRefGoogle Scholar
  23. 23.
    Wang, Q.J., Wang, J.B., Zhong, X.L., Tan, Q.H., Zhou, Y.C.: Ferromagnetism study in ZnO codoped with Al and Co from first-principles calculations. J. Phys. Chem. C. 115, 24478–24484 (2011)CrossRefGoogle Scholar
  24. 24.
    Chang, G.S., Kurmaev, E.Z., Boukhvalov, D.W., Finkelstein, L.D., Moewes, A., Bieber, H., Colis, S., Dinia, A.: Co and Al co-doping for ferromagnetism in ZnO: co diluted magnetic semiconductors. J. Phys. Condens. Matter. 21, 056002 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Milman, V., Winkler, B., White, J.A., Pickard, C.J., Payne, M.C., Akhmatskaya, E.V., Nobes, R.H.: Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane wave study. Int. J. Quantum Chem. 77, 895–910 (2015)CrossRefGoogle Scholar
  26. 26.
    Bolzan, A.A., Fong, C., Kennedy, B.J., Howard, C.J.: Structural studies of rutile-type metal dioxides. Acta Crystallogr. 53, 373–380 (2010)CrossRefGoogle Scholar
  27. 27.
    Zhang, K.C., Li, Y.F., Liu, Y., Chi, F.: Densityfunctional study on the ferromagnetism of Mn-doped SnO2. J. Appl. Phys. 114, 133707 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Fitzgerald, C.B., Venkatesan, M., Dorneles, L.S., Gunning, R., Stamenov, P., Coey, J.M.D., Stampe, P.A., Kennedy, R.J., Moreira, E.C., Sias, U.S.: Magnetism in dilute magnetic oxide thin films based on SnO2. Phys. Rev. B. 74, 115307 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Coey, J.M.D., Douvalis, A.P., Fitzgerald, C.B., Venkatesan, M.: Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Jiang, L., Lu, Y., Zhang, C.W., Wang, P.J., Feng, X.Y., Zhang, G.L.: Influence of oxygen vacancy on electronic and magnetic properties in Cr doped SnO2 Superlattice. J. Phys. Soc. Jpn. 80, 4709 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Long Lin
    • 1
  • Pengtao Wang
    • 1
  • Jingtao Huang
    • 1
    • 2
  • Weiyang Yu
    • 2
    Email author
  • Hualong Tao
    • 3
  • Linghao Zhu
    • 1
  • Zhanying Zhang
    • 1
  1. 1.Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina
  2. 2.School of Physics and Electronic Information EngineeringHenan Polytechnic UniversityJiaozuoChina
  3. 3.Liaoning Key Materials Laboratory for Railway, School of Materials Science and EngineeringDalian Jiaotong UniversityDalianChina

Personalised recommendations