Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3557–3562 | Cite as

Oxygen Vacancy-Induced Room Temperature Ferromagnetism in Rutile TiO2

  • H. Liu
  • G. P. LiEmail author
  • Q. L. Lin
  • D. J. E
  • X. D. Gao
  • X. B. Wei
  • X. D. Pan
  • S. X. Zhang
  • J. J. Ding
  • W. Lan
Original Paper
  • 106 Downloads

Abstract

As oxygen vacancies play an important role in ferromagnetism of rutile TiO2, a method of γ-ray irradiates rutile TiO2 single crystals was subtly proposed to study the effect of oxygen vacancies on magnetic properties. Remarkably, room temperature ferromagnetism was observed in γ-ray irradiated rutile TiO2 single crystals, and the saturation magnetization is the strongest when dose is 4 × 104 Gy which assigned to ESR results. Since the displacement threshold energy of Ti atom is much bigger than that of O atom, the defects produced by γ-irradiation are mainly oxygen vacancies. After irradiation, XPS, PL spectra indicate the presence of oxygen vacancies(VO), Ti3+, and VO-Ti3+ composite defects.

Keywords

Room temperature ferromagnetism Oxygen vacancy γ irradiation Rutile TiO2 

Notes

Acknowledgements

A portion of this work was performed on the Steady High Magnetic Field Facilities, High Magnetic Field Laboratory, CAS. γ-irradiation work was supported by the School for Radiation and Interdisciplinary Sciences, Soochow University, China.

Funding Information

This work was supported by the National Natural Science Foundation of China (11575074), the Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University (lzujbky-2018-kb06), the Fundamental Research Funds for the Central Universities of Ministry of Education of China(lzujbky-2017-it39, lzujbky-2018-it38), the DSTI Foundation of Gansu (2018ZX-07).

References

  1. 1.
    Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissörtel, F., Salbeck, J., Spreitzer, H., Grätzel, M.: Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 6702 (1998)CrossRefGoogle Scholar
  2. 2.
    Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 5528 (2001)CrossRefGoogle Scholar
  3. 3.
    Yaghoubi, H., Taghavinia, N., Alamdari, E.K.: Self cleaning TiO2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf. Coat. Tech. 204, 1562 (2010)CrossRefGoogle Scholar
  4. 4.
    Hong, N.H., Sakai, J., Huong, N.T., Ruyter, A., Briz, V.: Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B 70, 6897 (2004)Google Scholar
  5. 5.
    Kaspar, T.C., Droubay, T., Shutthanandan, V., Heald, S.M., Wang, C.M., Mccready, D.E., Thevuthasan, S., Bryan, J.D., Gamelin, D.R., Kellock, A.J.: Ferromagnetism and structure of epitaxial Cr-doped anatase TiO2 thin films. Phys. Rev. B 73, 5327 (2006)CrossRefGoogle Scholar
  6. 6.
    Saadaoui, H., Luo, X., Salman, Z., Cui, X.Y., Bao, N.N., Bao, P., Zheng, R.K., Tseng, L.T., Du, Y.H., Prokscha, T.: Intrinsic ferromagnetism in the diluted magnetic semiconductor Co:TiO2. Phys. Rev. Lett. 117, 227202 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Jian-Yun, Z., Shan-Hu, B., Yan-Hong, L., Ping, J.: Activation and enhancement of room-temperature ferromagnetism in Cu-doped anatase TiO2 films by bound magnetic polaron and oxygen defects. ACS Appl Mater. Inter. 6, 22243 (2014)CrossRefGoogle Scholar
  8. 8.
    Songbo, W., Lun, P., Jia-Jia, S., Wenbo, M., Ji-Jun, Z., Li, W., Xiangwen, Z.: Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 137, 2975 (2015)CrossRefGoogle Scholar
  9. 9.
    Singh, V.R., Ishigami, K., Verma, V.K., Shibata, G., Yamazaki, Y., Kataoka, T., Fujimori, A., Chang, F.H., Huang, D.J., Lin, H.J.: Ferromagnetism of cobalt-doped anatase TiO2 studied by bulk- and surface-sensitive soft x-ray magnetic circular dichroism. Appl. Phys. Lett. 100, 242404 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Yan, W., Sun, Z., Pan, Z., Liu, Q., Yao, T., Wu, Z., Song, C., Zeng, F., Xie, Y., Hu, T.: Oxygen vacancy effect on room-temperature ferromagnetism of rutile Co:TiO2 thin films. Appl. Phys. Lett. 94, 042508 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Yang, J.Y., Han, Y.L., He, L., Dou, R.F., Xiong, C.M., Nie, J.C.: D carrier induced intrinsic room temperature ferromagnetism in Nb:TiO2 film. Appl. Phys. Lett. 100, 202409 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Xu, N.N., Li, G.P., Lin, Q.L., Liu, H., Bao, L.M.: Structural and magnetic study of undoped and Cu-doped rutile TiO2 single crystals. J. Supercond. Nov. Magn. 30, 1 (2017)CrossRefGoogle Scholar
  13. 13.
    Xu, N.N., Li, G.P., Pan, X.D., Bao, L.M.: Oxygen vacancy-induced room-temperature ferromagnetism in D-D neutron irradiated single-crystal TiO2 (001) rutile. Chinese Phys. B 23, 10610 (2014)Google Scholar
  14. 14.
    Lin, Q.L., Li, G.P., Xu, N.N., Liu, H., Wang, C.L.: A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Phys. Sin. 66, 302 (2017)Google Scholar
  15. 15.
    Liu, H., Li, G.P., Xu, N.N., Lin, Q.L., Yang, L., Wang, C.L.: A simulation study of structural and optical properties in Cu ions implantation single-crystal rutile. Acta Phys. Sin. 65, 185 (2016)Google Scholar
  16. 16.
    Lin, Q.L., Li, G.P., Xu, N.N., Liu, H., E, D.J., Wang, C.L.: A first-principles study on magnetic properties of the intrinsic defects in wurtzite ZnO. J. Chem. Phys. 150, 3094704 (2019)Google Scholar
  17. 17.
    Lee, H.Y., Clark, S.J., Robertson, J.: Calculation of point defects in rutile TiO2 by the screened-exchange hybrid functional. Phys. Rev. B 86, 7 (2012)Google Scholar
  18. 18.
    Wang, S., Pan, L., Song, J.J., Mi, W., Zou, J.J., Wang, L., Zhang, X.: Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J. Am. Chem. Soc. 137, 2975 (2015)CrossRefGoogle Scholar
  19. 19.
    Robinson, M., Marks, N.A., Whittle, K.R., Lumpkin, G.R.: Systematic calculation of threshold displacement energies: case study in rutile. Phys. Rev. B 85, 104105 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Han, G.B., Hu, S.J., Yan, S.S., Mei, L.M.: Oxygen vacancy induced ferromagnetism in rutile TiO2−x. Phys. Status. Solidi-R 3, 148 (2009)CrossRefGoogle Scholar
  21. 21.
    Yang, K., Dai, Y., Huang, B., Feng, Y.P.: Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2. Phys. Rev. B 81, 3 (2010)Google Scholar
  22. 22.
    Song, Y.L., Wang, X.J., Tao, L.L., Song, B.Q., Zhang, L.L., Zhang, Y., Sui, Y., Liu, Z.G., Tang, J.K., Han, X.F.: Effect of Ga-doping and oxygen vacancies on the ferromagnetism of TiO2 thin films. J. Alloys Compd. 694, 929 (2017)CrossRefGoogle Scholar
  23. 23.
    Henderson, M.A., Epling, W.S., Peden, C.H.F., Perkins, C.L.: Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O22 with OH groups adsorbed at electronic defects on TiO2(110). J. Phys. Chem. B 107, 534 (2003)CrossRefGoogle Scholar
  24. 24.
    Cheng, X.Q., Ma, C.Y., Yi, X.Y., Yuan, F., Xie, Y., Hu, J.M., Hu, B.C., Zhang, Q.Y.: Structural, morphological, optical and photocatalytic properties of Gd-doped TiO2 films. Thin Solid Films 615, 13 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Memesa, M., Lenz, S., Emmerling, S.G.J., Nett, S., Perlich, J., Mller-buschbaum, P., Gutmann, J.S.: Morphology and photoluminescence study of titania nanoparticles. Colloid Poly. Sci. 289, 943 (2011)CrossRefGoogle Scholar
  26. 26.
    Li, D., Haneda, H., Labhsetwar, N.K., Hishita, S., Ohashi, N.: Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett. 401, 579 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Kernazhitsky, L., Shymanovska, V., Naumov, V., Fedorenko, L., Kshnyakin, V., Shcherban, N., Filonenko, S., Baran, J.: Room temperature photoluminescence of mixed titanium-manganese oxides. J. Lumin. 187, 521 (2017)CrossRefGoogle Scholar
  28. 28.
    Wang, X., Song, Y., Tao, L.L., Feng, J.F., Sui, Y., Tang, J., Song, B., Wang, Y., Wang, Y., Zhang, Y.: Origin of ferromagnetism in aluminum-doped TiO2 thin films: theory and experiments. Appl. Phys. Lett. 105, 262402 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Anitha, B., Khadar, M.A.: Dopant concentration dependent magnetism of Cu-doped TiO2 nanocrystals. J. Nanopart. Res. 18, 1 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Li, J., Li, F., Zhuang, Y., Jin, L., Wang, L., Wei, X., Xu, Z., Zhang, S.: Microstructure and dielectric properties of (Nb+In) Co-doped rutile TiO2 ceramics. J. Appl. Phys. 116, 61 (2014)CrossRefGoogle Scholar
  31. 31.
    Gonbeau, D., Guimon, C., Pfister-Guillouzo, G., Levasseur, A., Meunier, G., Dormoy, R.: XPS study of thin films of titanium oxysulfides. Surf. Sci. 254, 81 (1991)ADSCrossRefGoogle Scholar
  32. 32.
    Wang, F., Li, H., Wu, Q., Fang, J., Huang, Y., Yin, C., Xu, Y., Luo, Z.: Improving the performance of a non-aqueous lithium-air battery by defective titanium dioxides with oxygen vacancies. Electrochim. Acta 202, 1 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, X., Tian, H., Wang, X., Xue, G., Tian, Z., Zhang, J., Yuan, S., Yu, T., Zou, Z.: Role of oxygen vacancy-Ti3+ states on TiO2 nanotubes’ surface in dye-sensitized solar cells. Mater. Lett. 100, 51 (2013)CrossRefGoogle Scholar
  34. 34.
    Zhao, Z., Zhang, X., Zhang, G., Liu, Z., Qu, D., Miao, X., Feng, P., Sun, Z.C.: Effect of defects on photocatalytic activity of rutile TiO2 nanorods. Nano Res. 8, 1 (2015)CrossRefGoogle Scholar
  35. 35.
    Buck, E.C.: Effects of electron irradiation of rutile. Radiat. Eff. Defect. 141, 133 (1995)Google Scholar
  36. 36.
    Jin, Q., Shen, Y., Zhu, S., Li, X., Hu, M.: Promotional effects of Er incorporation in CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3. Chinese J. Catal. 37, 1521 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. Liu
    • 1
  • G. P. Li
    • 1
    Email author
  • Q. L. Lin
    • 1
  • D. J. E
    • 1
  • X. D. Gao
    • 1
  • X. B. Wei
    • 1
  • X. D. Pan
    • 1
  • S. X. Zhang
    • 1
  • J. J. Ding
    • 1
  • W. Lan
    • 2
  1. 1.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations