Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3609–3613 | Cite as

Structural, Magnetic, and Magnetoelastic Properties of High Nd-Content Laves Alloys Prepared by Solid-State Synthesis

  • C. Y. Shen
  • J. J. LiuEmail author
  • H. T. Zhang
  • W. B. Shen
  • Z. B. PanEmail author
  • P. Z. Si
Original Paper
  • 60 Downloads

Abstract

The magnetostrictive alloys with composition Tb0.4Nd0.6(Fe0.8Co0.2)x (1.50 ≤ × ≤ 1.90) are synthesized using the solid-state mechanical alloying (MA) method followed by sintering. The phase component, structure, thermal stability, and magnetoelastic properties are investigated as functions of composition, milling process, and annealing temperature. An amorphous phase companied by free alpha-iron is formed by MA in a high-energy ball mill, which crystallizes into MgCu2-type and PuNi3-type structures with different annealing temperatures. A single Laves phase for the high Nd-content Tb0.4Nd0.6(Fe0.8Co0.2)1.60 is formed at optimal conditions for heat treating at 700 °C for 30 min. A large linear anisotropic magnetostriction λa (=λ||λ) as high as 560 ppm at 12 kOe is obtained for the sintered alloy, which may make it a promising magnetostrictive material. Meanwhile, this work may help to open up a new way to search for Laves phase magnetostrictive materials containing Nd.

Keywords

Mechanical alloying Sintering Laves phase Magnetic properties Magnetostriction 

Notes

Funding Information

This work was supported by the National Natural Science Foundation of China (No. 50801039), Zhejiang Province (Y18E010005), Ningbo city (20191JCGY010115), and K.C. Wong Magna Fund in Ningbo University.

References

  1. 1.
    Clark, A.E.: Magnetostrictive rare earth–Fe2 compounds. In: Wohlfarth, E.P. (ed.) Ferromagnetic materials, vol. 1, pp. 531–589. North-Holland, Amsterdam (1980)Google Scholar
  2. 2.
    Engdahl, G.: Handbook of Giant Magnetostrictive Materials. Academic Press, San Diego (2000)Google Scholar
  3. 3.
    Pan, Z.B., Liu, J.J., Si, P.Z., Ren, W.J.: Mater. Res. Bull. 77, 122 (2016)CrossRefGoogle Scholar
  4. 4.
    Babu, V.H., Markandeyulu, G., Subrahmanyam, A.: Appl. Phys. Lett. 90, 252513 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, G.B., Zheng, W.G., Cui, Y., Shi, Y.G., Shi, D.N.: J. Supercond. Nov. Magn. 31, 2217 (2018)CrossRefGoogle Scholar
  6. 6.
    Liu, X.N., Lin, K., Gao, Q.L., Zhu, H., Li, Q., Cao, Y.L., Liu, Z.N., You, L., Chen, J., Ren, Y., Huang, R.J., Lapidus, S.H., Xing, X.R.: Inorg. Chem. 57, 689 (2018)CrossRefGoogle Scholar
  7. 7.
    Rajasekhar, P., Markandeyulu, G.: J. Magn. Magn. Mater. 48, 82 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Cui, Y., Liu, Y.D., Ji, Y.D., Shi, Y.G., Shi, D.N.: Mater. Lett. 242, 135 (2019)CrossRefGoogle Scholar
  9. 9.
    Shi, Y.G., Tang, S.L., Huang, Y.J., Lv, L.Y., Du, Y.W.: Appl. Phys. Lett. 90, 142515 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Yin, H.Y., Liu, J.J., Wang, R., Liu, X.C., Sun, N.K.: Mater. Chem. Phys. 134, 1102 (2012)CrossRefGoogle Scholar
  11. 11.
    Amira, S., Santos, S.F., Huot, J.: Intermetallics. 18, 140 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, J.J., Ren, W.J., Zhao, X.G., Liu, W., Zhang, Z.D.: J. Appl. Phys. 97, 10M307 (2005)CrossRefGoogle Scholar
  13. 13.
    Pan, Z.B., Liu, J.J., Wang, R., Liu, X.Y., Wang, J., Sun, N.K., Si, P.Z.: Appl. Phys. A Mater. Sci. Process. 115, 1121 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Buschow, K.H.J.: Rep. Prog. Phys. 40, 1179 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    Westwood, P., Abell, J.S., Pitman, K.C.: J. Appl. Phys. 67, 4998 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    Santos, I.A., Gama, S.: J. Appl. Phys. 86, 2334 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science & Chemical EngineeringNingbo UniversityNingboChina
  2. 2.College of Materials Science & EngineeringChina Jiliang UniversityHangzhouChina

Personalised recommendations