Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 10, pp 3155–3163 | Cite as

Transmission EBSD (t-EBSD) as Tool to Investigate Nanostructures in Superconductors

  • A. Koblischka-Veneva
  • M. R. KoblischkaEmail author
  • J. Schmauch
  • M. Murakami
Original Paper


The transmission electron backscatter diffraction (t-EBSD) technique has proven to be an indispensable tool for the analysis of microstructures of superconducting samples, both high-Tc samples (YBa2Cu3Oy, Bi2Sr2CaCu2O8) as well as MgB2 or iron-based materials. The knowledge of the grain boundary properties (misorientation, length, width) is essential for the further optimization of sample performance. Any addition of secondary phase(s) to improve the flux pinning properties is required to be of nanometer dimensions, so the higher achievable resolution and the better imaging properties are important to obtain reasonably high image quality to enable automated orientation mapping. The orientation maps reveal not only the location and the shape of the inclusions within the superconducting matrix or at the grain boundaries but also their influence on the surrounding superconducting matrix, which also plays an important role in flux pinning. In the case of sintered MgB2 bulk samples, the demand for higher critical current densities leads to MgB2 grains in the 100-nm range, which is already difficult to be studied by means of conventional EBSD. Furthermore, t-EBSD is useful for the analysis of specific microstructures of unconventional superconductors like superconducting foams or superconducting nanowire networks.


Superconductors Transmission electron backscatter diffraction Nanometer-sized grains Pinning centers Orientation mapping 



We thank J. Noudem (CRISMAT, Caen, France) for providing us with the spark-plasma sintered MgB2 sample, K. Nakazato, M. Muralidhar (SIT, Tokyo, Japan) for the IG-processed YBCO bulk, and X. L. Zeng (Saarland University, Saarbrücken, Germany) for the Bi-2212 nanowire fabrics and K. Berger, B. Douine (GREEN, Nancy, France) for valuable discussions. This work is part of the SUPERFOAM international project funded by ANR and DFG under the references ANR-17-CE05-0030 and DFG-ANR Ko2323-10, respectively.


  1. 1.
    Humphreys, F.J.: Characterization of fine-scale microstructures by electron backscatter diffraction (EBSD). Scr. Mater. 51, 771–776 (2004)CrossRefGoogle Scholar
  2. 2.
    Dingley, D.: Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J. Microsc. 213, 214–224 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, D., Kuo, J.-C., Wu, W.-T.: Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy 111, 1488–1494 (2011)CrossRefGoogle Scholar
  4. 4.
    Koblischka, M.R., Koblischka-Veneva, A.: Applications of the electron backscatter diffraction technique to ceramic materials. Phase Transit. 86, 651–660 (2013)CrossRefGoogle Scholar
  5. 5.
    Trimby, P.W.: Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 16–24 (2012)CrossRefGoogle Scholar
  6. 6.
    Keller, R.R., Geiss, R.H.: Transmission EBSD from 10 nm domains in a scanning electron microscope. J. Microsc. 245, 245–251 (2012)CrossRefGoogle Scholar
  7. 7.
    Sneddon, G.C., Trimby, P.W., Cairney, J.M.: Transmission Kikuchi diffraction in a scanning electron microscope: A review. Mat. Sci. Eng. R 110, 1–12 (2016)CrossRefGoogle Scholar
  8. 8.
    Britton, B., Holton, I., Meaden, G., Dingley, D.: High angular resolution electron backscatter diffraction: Measurement of strain in functional and structural materials. Microsc. Anal. 27, 8–13 (2013)Google Scholar
  9. 9.
    van Bremen, R., Ribas Gomes, D., de Jeer, L.T.H., Ocelik, V., Hosson, J.T.h.M.: On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD). Ultramicroscopy 160, 256–264 (2016)CrossRefGoogle Scholar
  10. 10.
    Koblischka-Veneva, A., Koblischka, M.R., Schmauch, J., Hannig, M.: Human dental enamel: A natural nanotechnology masterpiece investigated by TEM and t-EBSD. Nano Res. 11, 3911–3921 (2018)CrossRefGoogle Scholar
  11. 11.
    Wong, D.C.K., Yeoh, W.K., Trimby, P.W., De Silva, K.S.B., Bao, P., Li, W.X., Xu, X., Dou, S.X., Ringer, S.P., Zheng, R.K.: Characterisation of nano-grains in MgB2 superconductors by transmission Kikuchi diffraction. Scripta Mater. 101, 36–39 (2016)CrossRefGoogle Scholar
  12. 12.
    Koblischka-Veneva, A., Koblischka, M.R., Schmauch, J., Inoue, K., Muralidhar, M., Berger, K., Noudem, J.: EBSD analysis of MgB2 bulk superconductors. Supercond. Sci. Technol. 29, 044007 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Koblischka-Veneva, A., Koblischka, M.R., Zeng, X.L., Schmauch, J., Hartmann, U.: TEM and electron backscatter diffraction analysis (EBSD) on superconducting nanowires. J. Phys.: Conf. Ser. 1054, 012005 (2018)Google Scholar
  14. 14.
    Reimer, L.: Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. Springer Science, Berlin (1985)CrossRefGoogle Scholar
  15. 15.
    Orientation Imaging Microscopy (OIM) Software Version V4.0, User Manual, TexSEM Laboratories (TSL), Draper UT (2006)Google Scholar
  16. 16.
    Koblischka-Veneva, A., Koblischka, M.R., Chen, Y., Harris, V.G.: Analysis of grain shape and orientation in BaFe12O19-ferrites using electron backscatter diffraction (EBSD). IEEE Trans. Magn. 45, 4219–4222 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Koblischka-Veneva, A., Koblischka, M.R., Schmauch, J., Chen, Y., Harris, V.G.: EBSD analysis of the microtexture of Ba-hexaferrite samples. J. Phys.: Conf. Ser. 200, 082014 (2010)Google Scholar
  18. 18.
    Koblischka-Veneva, A., Koblischka, M.R.: Surface preparation of high-T c superconductors for MO-imaging. In: Johansen, T.H., Shantsev, D.V (eds.) MO Imaging, pp 242–246. Kluwer, Dordrecht (2004)Google Scholar
  19. 19.
    Noudem, J.G., Aburras, M., Bernstein, P., Chaud, X., Muralidhar, M., Murakami, M.: Development in processing of MgB2 cryo-magnet superconductors. J. Appl. Phys. 116, 163916 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Nakazato, K., Muralidhar, M., Koshizuka, N., Inoue, K., Murakami, M.: Effect of growth temperature on superconducting properties of YBa2Cu3Oy bulk superconductors grown by seeded infiltration. Phys. C 504, 4–7 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Zeng, X.L., Koblischka, M.R., Karwoth, T., Hauet, T., Hartmann, U.: Preparation of granular Bi-2212 nanowires by electrospinning. Supercond. Sci. Technol. 30, 035014 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Koblischka-Veneva, A., Koblischka, M.R., Qu, T., Han, Z., Mücklich, F.: Texture analysis of monofilamentary, Ag-sheathed (Pb,Bi)2Sr2Ca2Cu3Ox tapes by electron backscatter diffraction (EBSD). Phys. C 468, 174–182 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Wiederhold, A., Koblischka, M.R., Inoue, K., Muralidhar, M., Murakami, M., Hartmann, U.: Electric transport measurements on bulk, polycrystalline MgB2 samples prepared at various reaction temperatures. J. Phys.: Conf. Ser. 695, 012004 (2016)Google Scholar
  24. 24.
    Koblischka-Veneva, A., Koblischka, M.R., Schmauch, J., Wan, Y., Qian, J., Yao, X.: EBSD characterization of specific microstructures in RE-BCO superconductors. IEEE Trans. Appl. Supercond. 29, 6800504 (2019)Google Scholar
  25. 25.
    Koblischka-Veneva, A., Koblischka, M.R., Ide, N., Inoue, K., Muralidhar, M., Hauet, T., Murakami, M.: Microstructural and magnetic analysis of a superconducting foam and comparison with IG-processed bulk samples. J. Phys.: Conf. Ser. 695, 012002 (2016)Google Scholar
  26. 26.
    Pavan Kumar Naik, S., Muralidhar, M., Murakami, M.: Influence of Processing Conditions on the Microstructure and Physical Properties in Infiltration Growth Processed Mixed REBCO Bulk Superconductors. IEEE Trans. Appl. Supercond. 29, 6800305 (2019)Google Scholar
  27. 27.
    Namburi, D.K., Shi, Y., Palmer, K.G., Dennis, A.R., Durrell, J.H., Cardwell, D.A.: A novel, two-step top seeded infiltration and growth process for the fabrication of single grain, bulk (RE)BCO superconductors. Supercond. Sci. Technol. 29, 095010 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Koblischka-Veneva, A., Koblischka, M.R., Mücklich, F., Ogasawara, K., Murakami, M.: Interactions of Y2BaCuO5 particles and the YBCO matrix within melt-textured YBCO samples studied by means of electron backscatter diffraction. Supercond. Sci. Technol. 18, S158–S163 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    Ogasawara, K., Sakai, N., Koblischka-Veneva, A., Koblischka, M.R., Murakami, M.: Subgrain structures and superconductivity in REBaCuO bulk superconductors. Phys. C 386, 225–230 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Experimental PhysicsSaarland UniversitySaarbrückenGermany
  2. 2.Superconducting Materials Laboratory, Department of Materials Science and EngineeringShibaura Institute of TechnologyTokyoJapan

Personalised recommendations