Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 10, pp 3329–3337 | Cite as

Magnetic Relaxation Experiments in CNT-Based Magnetic Nanocomposite

  • J. Calvo-de la RosaEmail author
  • A. L. Danilyuk
  • I. V. Komissarov
  • S. L. Prischepa
  • J. Tejada
Original Paper


In this work, we discuss the relaxation of the magnetic moments in a novel carbon nanotube (CNT)-based nanocomposite synthesized by using chemical vapor deposition process. The material consists of a matrix of CNT filled by Fe-based nanoparticles. This structure is seen clearly by scanning and transmission. X-ray diffraction and Raman spectroscopy are used to detect the predominant Fe3C phase and the CNT presence in the sample, respectively. The results obtained from both hysteresis cycles, M(H), and zero field cooled-field cooled (ZFC-FC) measurements confirm that the material is characterized by both a strong ferromagnetic exchange and random magnetic anisotropy. For the first time, we have been able to fit the magnetic relaxation data, M(t), by using both the two distributions of nanoparticles data deduced from the ZFC-FC data and the temperature dependence of the magnetic anisotropy obtained from the law of approach to saturation in random magnets.

Graphical Abstract


Carbon nanotubes Magnetic composite Magnetic relaxation Random magnetic anisotropy 



J. Calvo-de la Rosa acknowledges Ajuts a la Docència i a la Recerca (ADR) given by the Universitat de Barcelona and the Catalan Government for the quality accreditation given to his research group DIOPMA (2017 SGR 118). I.V. Komissarov and S.L. Prischepa acknowledge the financial support of the “Improving of the Competitiveness” Program of the National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).


  1. 1.
    Dormann, J.L., Fiorani, D., Tronc, E.: Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997)Google Scholar
  2. 2.
    George, M., John, A.M., Joy, S.S.N.P.A., Anatharaman, M.R.: Finite sizeeffects on the structural and magnetic properties of solid-gel synthesized MFe2O4 powders. J. Magn. Magn. Mater. 302, 190 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Mørup, S., Hansen, M.F., Frandsen, C.: Magnetic interactions between nanoparticles. Beilstein J. Nanotechnol. 1, 182–190 (2010)CrossRefGoogle Scholar
  4. 4.
    Xiao, D., Lu, T., Zeng, R., Bi, Y.: Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim. Acta. 183(10), 2655–2675 (2016)CrossRefGoogle Scholar
  5. 5.
    Danilyuk, A.L., Prudnikava, A.L., Komissarov, I.V., Yanushkevich, K.I., Derory, A., Le Normand, F., et al.: Interplay between exchange interaction and magnetic anisotropy for iron-based nanoparticles in aligned carbon nanotube arrays. Carbon. 68(3), 337–345 (2014)CrossRefGoogle Scholar
  6. 6.
    Danilyuk, A.L., Komissarov, I.V., Kukharev, A.V., Le Normand, F., Hernandez, J.M., Tejada, J., Prischepa, S.L.: Impact of CNT medium on the interaction between ferromagnetic nanoparticles. Europhys. Lett. 117(2), 27007–1-7 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Danilyuk, A.L., Komissarov, I.V., Labunov, V.A., Le Normand, F., Derory, A., Hernandez, J.M., et al.: Manifestation of coherent magnetic anisotropy in a carbon nanotube matrix with low ferromagnetic nanoparticle content. New J. Phys. 17(2), 023073-1-12 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Komogortsev, S.V., Iskhakov, R.S., Balaev, A.D., Kudashov, A.G., Okotrub, A.V., Smirnov, S.I..: Magnetic properties of Fe3C ferromagnetic nanoparticles encapsulated in carbon nanotubes. Fizika Tv. Tela. 49(4), 700–703 (2007). [Phys Sol State 2007;49(4):734–8]ADSCrossRefGoogle Scholar
  9. 9.
    Prischepa, S.L., Danilyuk, A.L., Prudnikava, A.L., Komissarov, I.V., Labunov, V.A., Le Normand, F.: Exchange coupling and magnetic anisotropy for different concentration of iron based nanoparticles in aligned carbon nanotube arrays. Phys. Status Solidi C. 11(5–6), 1074–1079 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Prudnikava, A.L., Fedotova, J.A., Kasiuk, J.V., Shulitski, B.G., Labunov, V.A.: Mössbauer spectroscopy investigation of magnetic nanoparticles incorporated into carbon nanotubes obtained by the injection CVD method. Sem. Phys. Quan. Elect. & Opt. 13(2), 125–131 (2010)Google Scholar
  11. 11.
    Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61(20), 14095–14107 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cancado, L.G., Jorio, A., Saito, R.: Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)CrossRefGoogle Scholar
  13. 13.
    Di Leo, R.A., Landi, B.J., Raffaelle, R.P.: Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 101(6), 064307 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Pawlyta, M., Rouzaud, J.N., Duber, S.: Raman microspectroscopy characterization of carbon black: spectral analysis and structural information. Carbon. 84, 479–490 (2015)CrossRefGoogle Scholar
  15. 15.
    Saito, A., Hofmann, M., Dresselhaus, G., Jorio, A., Dresselhaus, M.S.: Raman scattering of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Bokobza, L., Bruneel, J.-L., Couzi, M., Raman, C.: Spectra of carbon-based materials (from graphite to carbon black) and of some silicone. C. 1(1), 77–94 (2015). Google Scholar
  17. 17.
    Byeon, J.W., Kwun, S.I.: Magnetic evaluation of microstructures and strength of eutectoid steel. Mater. Trans. 44(10), 2184–2190 (2003)CrossRefGoogle Scholar
  18. 18.
    Pfeiffer, H., Schüppel, W.: Investigation of magnetic properties of barrium ferrite powders by remanence curves. Phys. Status Solidi A. 119(1), 259–269 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Harris, R., Plischke, M., Zuckerman, M.J.: New model for amorphous magnetism. Phys. Rev. Lett. 31(3), 160–162 (1973)ADSCrossRefGoogle Scholar
  20. 20.
    Chudnovsky, E.M., Saslow, W.M., Serota, R.A.: Ordering in ferromagnets with random anisotropy. Phys. Rev. B. 33(1), 251–261 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    Chudnovsky, E.M., Tejada, J.: Evidence of the extended orientational order in amorphous alloys obtained from magnetic measurements. Europhys. Lett. 23(7), 517–522 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    Tejada, J., Martinez, B., Labarta, A., Chudnovsky, E.M.: Correlated spin glass generated by structural disorder in the amorphous Dy6Fe74B20 alloy. Phys. Rev. B. 44(14), 7698–7700 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    Chudnovsky, E.M.: Dependence of the magnetization law on structural disorder in amorphous ferromagnets. J. Magn. Magn. Mater. 79(1), 127–130 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    Tejada, J., Zhang, X.: Experiments in quantum magnetic relaxation. J. Magn. Magn. Mater. 140, 1815 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    Tejada, J., Chudnovsky, E.M.: Macroscopic quantum tunneling of the magnetic moment. Cambridge University Press, Cambridge (1998)Google Scholar
  26. 26.
    Tejada, J., Zhang, X., Chudnovsky, E.M.: Quantum relaxation in random magnets. Phys. Rev. B. 47, 14997 (1993)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and Physical Chemistry, Chemistry FacultyUniversitat de BarcelonaBarcelonaSpain
  2. 2.Belarusian State University of Informatics and RadioelectronicsMinskBelarus
  3. 3.National Research Nuclear University MEPhIMoscowRussia
  4. 4.Department of Condensed Matter, Physics FacultyUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations