Advertisement

Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 11, pp 3509–3516 | Cite as

Effects of Oxygen Vacancy on the Magnetic Properties of Ni-Doped SnO2 Nanoparticles

  • Chenchen Zhang
  • Min Zhou
  • Yongjia ZhangEmail author
  • Wentao Hao
  • Li Sun
  • Ensi Cao
  • Zhi Yang
Original Paper
  • 107 Downloads

Abstract

We studied the ferromagnetism of Ni-doped SnO2 with and without oxygen vacancy (VO) by experiments and calculations. Sn0.96Ni0.04O2 nanocrystalline powder prepared by the sol-gel method exhibits room-temperature ferromagnetism, and the vacuum annealing reduces its saturation magnetizations. The density functional theory (DFT) calculations show that the doped Ni atom can introduce a local magnetic moment of about 2.0 μB in SnO2 (110) surface, which is ascribed to the spin-polarization of Ni 3d and O 2p electrons. The type of preferential magnetic coupling of Ni-doped SnO2 (110) surface depends upon the distributions of Ni dopants, and ferromagnetic coupling is more favorable in most cases. Introduction of VO obviously weakens the ferromagnetic interaction of Ni-doped SnO2 (110) surface, which can give a reasonable explanation for our experimental observations.

Keywords

Doped First-principle Magnetism Oxygen defects Sol-gel 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11604234, 51602214, and 11404236), Special Funds of the National Natural Science Foundation of China (Grant No. 11447189), and the Natural Science Foundation of Shanxi Province (201801D221128).

References

  1. 1.
    Wolf, S.A., Awschalom, D.D., Buhrman, R.A., et al.: Spintronics: a spin-based electronics vision for the future. Science. 294, 1488–1495 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Burch, K.S., Awschalom, D.D., Basov, D.N.: Optical properties of III-Mn-V ferromagnetic semiconductors. J Magn Magn Mater. 320, 3207–3228 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Sato, K., Bergqvist, L., Kudrnovský, J., et al.: First-principles theory of dilute magnetic semiconductors. Rev Mod Phys. 82, 1633–1690 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Matsumoto, Y., Murakami, M., Shono, T., et al.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science. 291, 854–856 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Ueda, K., Tabata, H., Kawai, T.: Magnetic and electric properties of transition-metal-doped ZnO films. Appl Phys Lett. 79, 988–990 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Huang, L.M., Rosa, A.L., Ahuja, R.: Ferromagnetism in Cu-doped ZnO from first-principles theory. Phys Rev B. 74, 075206 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Yang, K., Dai, Y., Huang, B.: Density functional characterization of the electronic structure and visible-light absorption of Cr-doped anatase TiO2. ChemPhysChem. 10, 2327 (2009)CrossRefGoogle Scholar
  8. 8.
    Lamrani, A.F., Belaiche, M., Benyoussef, A., et al.: Ferromagnetism in Mo-doped TiO2 rutile from ab initio study. J Supercond Nov Magn. 25, 503–507 (2012)CrossRefGoogle Scholar
  9. 9.
    Jarzebski, Z.M., Morton, J.P.: Physical properties of SnO2 materials III. Optical properties. J Electrochem Soc. 123, 333C–346C (1976)CrossRefGoogle Scholar
  10. 10.
    Wei, W., Dai, Y., Huang, B.: Role of Cu doping in SnO2 sensing properties toward H2S. J Phys Chem C. 115, 18597–18602 (2011)CrossRefGoogle Scholar
  11. 11.
    Batzill, M., Diebold, U.: The surface and materials science of tin oxide. Prog Surf Sci. 79, 47–154 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Hays, J., Punnoose, A., Baldner, R., et al.: Relationship between the structural and magnetic properties of Co-doped SnO2 nanoparticles. Phys Rev B. 72, 075203 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, H., Rogach, A.L.: Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater. 26, 123–133 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Fitzgerald, C.B., Venkatesan, M., Dorneles, L.S., et al.: Magnetism in dilute magnetic oxide thin films based on SnO2. Phys Rev B. 74, 115307 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, J., Skomski, R., Yue, L.P., et al.: Structure and magnetism of V-doped SnO2 thin films: effect of the substrate. J Phys Condens Matter. 19, 256204 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Misra, S.K., Andronenko, S.I., Rao, S., et al.: Cr3+ electron paramagnetic resonance study of Sn1−xCrxO2 (0.00≤ x≤ 0.10). J Appl Phys. 105, 07C514 (2009)CrossRefGoogle Scholar
  17. 17.
    Kimura, H., Fukumura, T., Kawasaki, M., et al.: Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl Phys Lett. 80, 94 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    Kim, H.S., Bi, L., Dionne, G.F., et al.: Structure, magnetic and optical properties, and Hall effect of Co- and Fe-doped SnO2 films. Phys Rev B. 77, 214436 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Aragón, F.H., Coaquira, J.A.H., Hidalgo, P., et al.: Structural and magnetic properties of pure and nickel doped SnO2 nanoparticles. J Phys Condens Matter. 22, 496003 (2010)CrossRefGoogle Scholar
  20. 20.
    Sharma, A., Varshney, M., Kumar, S., et al.: Magnetic properties of Fe and Ni doped SnO2 nanoparticles. Nanomater Nanotechno. 1, 6 (2011)CrossRefGoogle Scholar
  21. 21.
    Selvi, E.T., Sundar, S.M.: Popcorn like morphology and absence of room temperature ferromagnetism in Ni doped SnO2 nanoparticles. J Mater Sci Mater Electron. 29, 38–48 (2018)CrossRefGoogle Scholar
  22. 22.
    Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater. 4, 173–179 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Singhal, R.K., Samariya, A., Xing, Y.T., et al.: Electronic and magnetic properties of Co-doped ZnO diluted magnetic semiconductor. J Alloys Compd. 496, 324–330 (2010)CrossRefGoogle Scholar
  24. 24.
    Samariya, A., Singhal, R.K., Kumar, S., et al.: Defect-induced reversible ferromagnetism in Fe-doped ZnO semiconductor: an electronic structure and magnetization study. Mater Chem Phys. 123, 678–684 (2010)CrossRefGoogle Scholar
  25. 25.
    Singhal, R.K., Samariya, A., Kumar, S., et al.: Study of defect-induced ferromagnetism in hydrogenated anatase TiO2:Co. J Appl Phys. 107, 113916 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Samariya, A., Singhal, R.K., Kumar, S., et al.: Effect of hydrogenation vs. re-heating on intrinsic magnetization of Co doped In2O3. Appl Surf Sci. 257, 585–590 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Singhal, R.K., Samariya, A., Kumar, S., et al.: A close correlation between induced ferromagnetism and oxygen deficiency in Fe doped In2O3. Appl Surf Sci. 257, 1053–1057 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 59, 1758–1775 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B. 45, 13244–13249 (1992)ADSCrossRefGoogle Scholar
  30. 30.
    Palakawong, N., Sun, Y.Y., T-Thienprasert, J., et al.: Ga acceptor defects in SnO2 revisited: a hybrid functional study. Ceram Int. 43, S364–S368 (2017)CrossRefGoogle Scholar
  31. 31.
    Oviedo, J., Gillan, M.J.: Energetics and structure of stoichiometric SnO2 surfaces studied by first-principles calculations. Surf Sci. 463, 93–101 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Rahman, G., García-Suárez, V.M., Morbec, J.M.: Intrinsic magnetism in nanosheets of SnO2: a first-principles study. J Magn Magn Mater. 328, 104–108 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Ruilin, H., Hui, Y., Dingdi, W., et al.: First-principles study of magnetic properties of stoichiometric and O deficient low-index surfaces of rutile SnO2 and TiO2. J Magn Magn Mater. 374, 197–204 (2015)CrossRefGoogle Scholar
  34. 34.
    Venkatesan, M., Fitzgerald, C.B., Coey, J.M.D.: Thin films: unexpected magnetism in a dielectric oxide. Nature. 430, 630–630 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Hong, N.H., Sakai, J., Poirot, N., et al.: Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys Rev B. 73, 132404 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Espinosa, A., Sánchez, N., Sánchez-Marcos, J., et al.: Origin of the magnetism in undoped and Mn-doped SnO2 thin films: Sn vs oxygen vacancies. J Phys Chem C. 115, 24054–24060 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics & Optoelectronics, Key Laboratory of Advanced Transducers & Intelligent Control System, Ministry of EducationTaiyuan University of TechnologyTaiyuanPeople’s Republic of China

Personalised recommendations