Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 3001–3008 | Cite as

Structural, Elastic, Electronic, and Magnetic Properties of a New Full-Heusler Alloy Mn2MgGe: First-Principles Calculations

  • Huijun Wan
  • Weibo Yao
  • Dongwen Zeng
  • Jie Zhou
  • Wen Ruan
  • Lina Liu
  • Yufeng WenEmail author
Original Paper


We present the first-principles calculations of the structural, elastic, electronic, and magnetic properties for a new full-Heusler alloy Mn2MgGe. Both L21 and XA structures are considered for both nonmagnetic and ferromagnetic states. The results show that the XA structure in the ferromagnetic state is the energetically most favorable for the full-Heusler alloy, and exhibits ductile behavior, significant anisotropy, and robust half-metallicity. The total spin moment is 2.000 μB per formula unit in equilibrium state, which follows the Slater-Pauling rule. The spin-up electrons are metallic, whereas the spin-down bands are semiconductor with a gap of 1.086 eV at the equilibrium lattice constant of 6.066 Å. Half-metallicity is maintained within the lattice constant range from 5.6 to 6.1 Å. Our results indicate that Mn2MgGe is an interesting candidate in the area of spintronics.


Mn2MgGe Structural property Elastic property Half-metallic property First-principles 



The work is supported by the National Natural Science Foundation of China (51661013), the Science Funds of Natural Science Foundation of Jiangxi Province (20171BAB201020), the Technology Research Project of Jiangxi Provincial Department of Education (GJJ160737), and the PhD Start-up Fund of Natural Science Foundation of Jinggangshan University(JZB15007).


  1. 1.
    Yahiaoui, I.E., Lazreg, A., Dridi, Z., Al-Douri, Y., Bouhafs, B.: Electronic and magnetic properties of Co2CrGa1−xSix Heusler alloys. J. Supercond. Nov. Magn. 30, 421–424 (2017)Google Scholar
  2. 2.
    Amrich, O., Monir, M.E.A., Baltach, H., Omran, S.B., Sun, X.W., Wang, X., Al-Douri, Y., Bouhemadou, A., Khenata, R.: Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Nov. Magn. 31, 241–250 (2018)Google Scholar
  3. 3.
    Fadila, B., Ameri, M., Bensaid, D., Noureddine, M., Ameri, I., Mesbaha, S., Al-Douri, Y.: Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448, 208–220 (2018)ADSGoogle Scholar
  4. 4.
    de Groot, R.A., Mueller, F.M., van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)ADSGoogle Scholar
  5. 5.
    Ahmaian, F., Salary, A.: Half-metallicity in the inverse Heusler compounds Sc2MnZ (Z = C, Si, Ge, and Sn). Intermetallics 46, 243–249 (2014)Google Scholar
  6. 6.
    Graf, T., Felser, C., Parkin, S.S.P.: Simple rules for the understanding of Heusler compounds. Prog. Solid State Ch. 39, 1–50 (2011)Google Scholar
  7. 7.
    Khelfaoui, F., Ameri, M., Bensaid, D., Ameri, I., Al-Douri, Y.: Structural, elastic, thermodynamic, electronic,and magnetic investigations of full-Heusler compound Ag2CeAl: FP-LAPW method. J. Supercond. Nov. Magn. 31, 3183–3192 (2018)Google Scholar
  8. 8.
    Ishida, S., Asano, S., Ishida, J.: Bandstructures and hyperfine fields of Heusler alloys. J. Phys. Soc. Jpn 53, 2718–2715 (1984)ADSGoogle Scholar
  9. 9.
    Itoh, H., Nakamichi, T., Yamaguchi, Y., Kazama, N.: Neutron diffraction study of Heusler type alloy Mn0.47V 0.28Al0.25. Trans. Jpn. Inst. Met. 24, 265–271 (1983)Google Scholar
  10. 10.
    Zenasni, H., Faraoun, H.I., Esling, C.: First-principle prediction of half-metallic ferrimagnetism in Mn-based full-Heusler alloys with highly ordered structure. J. Magn. Magn. Mater. 333, 162–168 (2013)ADSGoogle Scholar
  11. 11.
    Ramesh Kumar, K., Harish Kumar, N., Babu, P.D., Venkatesh, S., Ramakrishnan, S.: Investigation of atomic anti-site disorder and ferrimagnetic order in the half-metallic Heusler alloy Mn2VGa. J. Phys.: Condens. Matter 24, 336007 (2012)Google Scholar
  12. 12.
    Qi, S., Zhang, C.H., Chen, B., Shen, J., Chen, N.: First-principles study on the ferrimagnetic half-metallic Mn2FeAs alloy. J. Solid State Chem. 225, 8–12 (2015)ADSGoogle Scholar
  13. 13.
    Berri, S., Ibrir, M., Maouche, D., Bensalem, R.: First principles study of structural, electronic and magnetic properties of Mn2CoAs. J. Magn. Magn. Mater. 361, 132–136 (2014)ADSGoogle Scholar
  14. 14.
    Liu, H.Z., Meng, F., Liu, H.Y., Li, J.Q., Liu, E.K., Wu, G.H., Zhu, X.X., Jiang, C.B.: Origin of the Z - 28 rule in Mn2Cu-based Heusler alloys: a comparing study. J. Magn. Magn. Mater. 324, 2127–2130 (2012)ADSGoogle Scholar
  15. 15.
    Kervan, S., Kervan, N.: Half-metallic properties of the CuHg2Ti-type Mn2ZnSi full-Heusler compound. Curr. Appl. Phys. 13, 80–83 (2013)ADSGoogle Scholar
  16. 16.
    Abada, A., Amara, K., Hiadsi, S., Amrani, B.: First principles study of a new half-metallic ferrimagnets Mn2-based full Heusler compounds: Mn2ZrSi and Mn2ZrGe. J. Magn. Magn. Mater. 388, 59–67 (2015)ADSGoogle Scholar
  17. 17.
    Kervan, N., Kervan, S., Canko, O., Atiş, M., Taşkin, F.: Half-metallic ferrimagnetism in the Mn2NbAl full-Heusler compound: a first-principles study. J. Supercond. Nov. Magn. 29, 187–192 (2015)Google Scholar
  18. 18.
    Gupta, D.C., Bhat, I.H.: Investigation of high spin-polarization, magnetic, electronic and half-metallic properties in RuMn2Ge and RuMn2Sb Heusler alloys. Mater. Sci. Eng. B 193, 70–75 (2015)Google Scholar
  19. 19.
    Jiang, D.G., Ye, Y.X., Liu, H.F., Gou, Q.G., Wu, D.L., Wen, Y.F., Liu, L.L.: First-principles calculations of electronic, acoustic and anharmonic properties of Mn2RuZ (Z = Si and Ge) Heusler compounds. J. Magn. Magn. Mater. 458, 268–278 (2018)ADSGoogle Scholar
  20. 20.
    Bensaid, D., Hellal, T., Ameri, M., Azzaz, Y., Doumi, B., Al-Douri, Y., Abderrahim, B., Benzoudji, F.: First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z = Si, Ge, and Sn) Heusler alloys. J. Supercond. Nov. Magn. 29, 1843–1850 (2016)Google Scholar
  21. 21.
    Semari, F., Dahmane, F., Baki, N., Al-Douri, Y., Akbudak, S., Uğur, G., Uğur, Ş., Bouhemadou, A., Khenata, R., Voon, C.H.: First-principle calculations of structural, electronic and magnetic investigations of Mn2RuGe1−xSnx quaternary Heusler alloys. Chinese J. Phys. 56, 567–573 (2018)ADSGoogle Scholar
  22. 22.
    Wei, X.P., Chu, S.B., Mao, G.Y., Deng, H., Lei, T., Hu, X.R.: First-principles study of properties of Mn2ZnMg alloy. J. Magn. Magn. Mater. 323, 2295–2299 (2011)ADSGoogle Scholar
  23. 23.
    Wei, X.P., Deng, J.B., Chu, S.B., Mao, G.Y., Lei, T., Hu, X.R.: Half-metallic ferrimagnetism in full-Heusler Mn2CuMg. J. Magn. Magn. Mater. 323, 185–188 (2011)ADSGoogle Scholar
  24. 24.
    Deng, H., Wei, X.P., Lei, T., Lei, Y.: Half-metallic and antiferromagnetism property of Mn2CdMg under pressure. J. Supercond. Nov. Magn. 25, 2465–2471 (2012)Google Scholar
  25. 25.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993)ADSGoogle Scholar
  26. 26.
    Kresse, G., Furthmller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)Google Scholar
  27. 27.
    Kresse, G., Furthmller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Blöchl, P. E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)ADSGoogle Scholar
  30. 30.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple [Phys. Rev. Lett. 77,3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997)ADSGoogle Scholar
  32. 32.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)ADSMathSciNetGoogle Scholar
  33. 33.
    Francis, B.: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)zbMATHGoogle Scholar
  34. 34.
    Jiang, D.G., Ye, Y.X., Liu, H.F., Gou, Q.G., Wu, D.L., Wen, Y.F., Liu, L.L.: First-principles predictions on structural, elastic and half-metallic properties of Fe2LiAs Heusler compound. J. Magn. Magn. Mater. 458, 235–240 (2018)ADSGoogle Scholar
  35. 35.
    Mouhat, F., Coudert, F.X.: Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 90, 224104–224107 (2014)ADSGoogle Scholar
  36. 36.
    Hill, R.: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952)ADSGoogle Scholar
  37. 37.
    Voigt, W.: Lehrbuch der kristallphysik, Taubner: Leipzig, Germany (1928)Google Scholar
  38. 38.
    Reuss, A.: Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)Google Scholar
  39. 39.
    Kube, C.M.: Elastic anisotropy of crystals. AIP Advance 6, 095209 (2016)ADSGoogle Scholar
  40. 40.
    Pugh, S.F.: Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)Google Scholar
  41. 41.
    Frantsevich, I.N., Voronov, F.F., Bokuta, S.A.: . In: Frantsevich, I.N. (ed.) Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, pp 60–180. Naukova Dumka, Kiev (1983)Google Scholar
  42. 42.
    Pettifor, D.G.: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345–349 (1992)Google Scholar
  43. 43.
    Brugger, K.: Determination of third-order elastic coefficients in crystals. J. Appl. Phys. 36, 768–773 (1965)ADSMathSciNetGoogle Scholar
  44. 44.
    Duan, Y.H., Sun, Y., Peng, M.J., Zhou, S.G.: Anisotropic elastic properties of the Ca-Pb compounds. J. Alloy Compd. 595, 14–21 (2014)Google Scholar
  45. 45.
    Anderson, O.L.: A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)ADSGoogle Scholar
  46. 46.
    Schreiber, E., Anderson, O.L., Soga, N.: Elastic Constants and their Measurements. McGraw, New York (1973)Google Scholar
  47. 47.
    Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163–164, 67–74 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences and PhysicsJinggangshan UniversityJi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringShanghai Jiaotong UniversityShanghaiPeople’s Republic of China

Personalised recommendations