Study of Superconductivity in YBa2Cu3O7-x/SrTiO3 Composites

  • T. Tchabukiani
  • D. Daraselia
  • D. Japaridze
  • Z. Jibuti
  • A. ShengelayaEmail author
Original Paper


Superconducting properties of YBa2Cu3O7-x (YBCO)/SrTiO3 (STO) polycrystalline composites were investigated. The composites were obtained by rapid thermal processing of the 20% YBCO–80% STO mixtures in the air in the temperature range 700–1000 °C for 2 min. Magnetization measurements showed that the superconducting critical temperature (Tc) is practically not changed if optimally doped YBCO is used in YBCO/STO composites. In contrast, a strong increase of Tc from 65 to 90 K was found in the case of underdoped YBCO. This increase of Tc can be explained by unusually fast diffusion of oxygen from STO to YBCO grains in sintered composites. Obtained results show that the YBCO oxidation process can be significantly accelerated in underdoped YBCO/STO composites during rapid high-temperature processing.


Cuprate superconductors Strontium titanate Composites 



The authors gratefully acknowledge F. La Mattina and E. Pomjakushina for valuable discussions and for help with the XRD measurements.

Funding Information

This work was supported by the Shota Rustavely National Science Foundation of Georgia under grant No. PhD_F_17_40.


  1. 1.
    Zubko, P., Gariglio, S., Gabay, M., Ghosez, P., Triscone, J.M.: Annu Rev Condens Matter Phys. 2, 141 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    Keldysh, L.V.: Pis'ma Zh. Eksp. Teor. Fiz. 29, 716 (1979) [JETP Lett. 29, 658 (1979)]Google Scholar
  3. 3.
    Shengelaya, A., Müller, K.A.: J. Supercond. Nov. Magn. 26, 491 (2013)CrossRefGoogle Scholar
  4. 4.
    Müller, K.A., Burkard, H.: Phys. Rev. B. 19, 3593 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    Kalnberga, M., Livinsh, M., Kundzinsh, M., Sternberg, A., Shorubalko, I., Shebanovs, L., Bormanis, K.: J. Low Temp. Phys. 105, 1433 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    Landinez-Téllez, D.A., Roa-Rojas, J., Peña-Rodriguez, G.: Mater. Res. 16, 1002 (2013)CrossRefGoogle Scholar
  7. 7.
    Matsumoto, Y., Irie, F.: Jpn. J. Appl. Phys. 29, 416 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    Feng, Y., Zhou, L., Du, S., Zhang, Y.: J. Phys. Condens. Matter. 6, 9755 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Lepeshev, A.A., Patrin, G.S., Yurkin, G.Y., Vasiliev, A.D., Nemtsev, I.V., Gokhfeld, D.M., Balaev, A.D., Demin, V.G., Bachurina, E.P., Karpov, I.V., Ushakov, A.V., Fedorov, L.Y., Irtyugo, L.A., Petrov, M.I.: J. Supercond. Nov. Magn. 31, 3841 (2018)CrossRefGoogle Scholar
  10. 10.
    Berling, D., Loegel, B., Mehdaoui, A., Regnier, S., Caranoni, C., Marfaing, J.: Supercond. Sci. Technol. 11, 1292 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Balaev, D.A., Shaihutdinov, K.A., Popkov, S.I., Gokhfeld, D.M., Petrov, M.I.: Supercond. Sci. Technol. 17, 175 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ivane Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Andronikashvili Institute of PhysicsIvane Javakhishvili Tbilisi State UniversityTbilisiGeorgia

Personalised recommendations