Journal of Superconductivity and Novel Magnetism

, Volume 32, Issue 9, pp 2987–2994 | Cite as

Magnetic Spectra of Soft Magnetic Composites Based on Fe-Si-Cr-B Amorphous and Carbonyl-Iron Powders

  • Q. S. Meng
  • F. Y. Yang
  • X. Y. Wu
  • T. T. Xu
  • M. M. Zhou
  • W. W. Guan
  • H. L. SuEmail author
  • Y. HanEmail author
  • Y. W. Du
Original Paper


Fe–Si–Cr–B amorphous and carbonyl-iron powders insulated with phosphoric acid solution were used to prepare soft magnetic composites. The mass ratios of phosphoric acid insulation solution and the carbonyl-iron powder dependences of the magnetic spectrum, the density, and the resistivity were studied. Both the real part and the imaginary part of the core’s complex permeability increased after an initial decrease with the acid mass ratio increasing. This is similar to the variation tendency of the core’s density and opposite to the variation tendency of the core’s resistivity. The amount of the air gap, reflected by the density, was proposed to be the most important factor that has a great influence on the composite’s magnetic properties. The increase of the air gap reduced the effective demagnetizing field and the resistivity. This improved the permeability and the hysteresis loss and deteriorated the eddy-current loss. Carbonyl-iron powder addition was found to improve the moldability and the permeability of the composite based on the Fe-Si-Cr-B amorphous powder, although its loss was higher than that of the amorphous powder. All these findings can be referenced when designing an amorphous-based soft magnetic composite (SMC) core with balanced permeability, loss, and cost for high-frequency inductor within a MHz band.


Soft magnetic composite Fe-Si-Cr-B amorphous powder Carbonyl-iron powder Magnetic spectra Loss mechanism 


Funding Information

This work was supported by the National Key R&D Program of China (Nos. 2017YFB0903904 and 2017YFB0903900), the Grant Project of Shenzhen Microgate Technology Co., Ltd. (2017-2020), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University (2018-2019), the Huaian Key Research & Development Plan (No. HAG201629), and the Innovation Training Program for Students of Hefei University of Technology (2018CXCYS034).


  1. 1.
    Zhao, G.L., Wu, C., Yan, M.: J. Alloys Compd. 685, 231–236 (2016)CrossRefGoogle Scholar
  2. 2.
    Shokrollahi, H., Janghorban, K.: J. Mater. Process. Technol. 189, 1–12 (2007)CrossRefGoogle Scholar
  3. 3.
    Hsiang, H.I., Fan, L.F., Hung, J.J.: J. Magn. Magn. Mater. 447, 1–8 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Schoppa, A., Delarbre, P.: IEEE Trans. Magn. 50, 2004304 (2014)CrossRefGoogle Scholar
  5. 5.
    Bureš, R., Strečková, M., Fáberová, M., Kollár, P., Füzer, J.: Arch. Metall. Mater. 62, 1149–1154 (2017)CrossRefGoogle Scholar
  6. 6.
    Liu, H.J., Su, H.L., Geng, W.B., Sun, Z.G., Song, T.T., Tong, X.C., Zou, Z.Q., Wu, Y.C., Du, Y.W.: J. Supercond. Nov. Magn. 29, 463–468 (2016)CrossRefGoogle Scholar
  7. 7.
    Strečková, M., Füzer, J., Kobera, L., Brus, J., Fáberová, M., Bureš, R., Kollár, P., Lauda, M., Medvecký, Ĺ., Girman, V., Hadraba, H., Bat'ková, M., Bat'ko, I.: Mater. Chem. Phys. 147, 649–660 (2014)CrossRefGoogle Scholar
  8. 8.
    Zhang, Z., Wu, P., Han, S.J., Tang, F.L., Su, H.L., Tong, X.C., Zou, Z.Q., Wu, Y.M., Wu, Y.C., Du, Y.W.: J. Supercond. Nov. Magn. 31, 1507–1513 (2018)CrossRefGoogle Scholar
  9. 9.
    Koohkan, R., Sharafi, S., Shokrollahi, H., Janghorban, K.: J. Magn. Magn. Mater. 320, 1089–1094 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Zhang, Z.M., Xu, W., Guo, T., Jiang, Y.Z., Yan, M.: J. Alloys Compd. 594, 153–157 (2014)CrossRefGoogle Scholar
  11. 11.
    Li, Z.C., Dong, Y.Q., Pauly, S., Chang, C., Wei, R., Li, F.S., Wang, X.M.: J. Alloys Compd. 706, 1–6 (2017)CrossRefGoogle Scholar
  12. 12.
    Dong, Y.Q., Li, Z.C., Liu, M., Chang, C.T., Li, F.S., Wang, X.M.: Mater. Res. Bull. 96, 160–163 (2017)CrossRefGoogle Scholar
  13. 13.
    Kim, Y.B., Jang, D.H., Seok, H.K., Kim, K.Y.: Mater. Sci. Eng. A. 449, 389–393 (2007)CrossRefGoogle Scholar
  14. 14.
    Neamţu, B.V., Marinca, T.F., Chicinaş, I., Isnard, O., Popa, F.: J. Alloys Compd. 600, 1–7 (2014)CrossRefGoogle Scholar
  15. 15.
    Li, B., Zheng, Z.G., Yu, H.Y., Zeng, D.C.: J. Magn. Magn. Mater. 438, 138–143 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Périgo, E.A., Nakahara, S., Pittini-Yamada, Y., de Hazan, Y., Graule, T.: J. Magn. Magn. Mater. 323, 1938–1944 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Xu, D.D., Zhou, B.L., Wang, Q.Q., Zhou, J., Yang, W.M., Yuan, C.C., Xue, L., Fan, X.D., Ma, L.Q., Shen, B.L.: Corros. Sci. 138, 20–27 (2018)CrossRefGoogle Scholar
  18. 18.
    Endo, I., Otsuka, I., Okuno, R., Shintani, A., Yoshino, M., Yagi, M.: IEEE Trans. Magn. 35, 3385–3387 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    Sugimura, K., Yabu, N., Sonehara, M., Sato, T.: IEEE Trans. Magn. 54, 2801805 (2018)CrossRefGoogle Scholar
  20. 20.
    Wan, D.F., Ma, X.L.: Magnetic Physics. University of Electronic Science and Technology of China, Chengdu (1994)Google Scholar
  21. 21.
    Maeda, T., Toyoda, H., Igarashi, N., Hirose, K., Mimura, K., Nishioka, T., Ikegaya, A.: SEI Tech. Rev. 60, 3–8 (2005)Google Scholar
  22. 22.
    Shokrollahi, H., Janghorban, K., Mazaleyrat, F., LoBue, M., Ji, V., Tcharkhtchi, A.: Mater. Chem. Phys. 114, 588–594 (2009)CrossRefGoogle Scholar
  23. 23.
    Byun, T.Y., Byson, S.C., Hong, K.S., Chang, K.K.: IEEE Trans. Magn. 35, 3445–3447 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    He, L.P., Chen, D.C., Shang, S.P.: J. Mater. Sci. 39, 4887–4892 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    Gilbert, I., Bull, S., Evans, T., Jack, A., Stephenson, D., De Sa, A.: J. Mater. Sci. 39, 457–461 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Mao, X.Y., Xu, F., Gao, W.L., Zhai, H.R., Du, Y.W.: Mater. Sci. Eng. A. 396, 155–158 (2005)CrossRefGoogle Scholar
  27. 27.
    Wu, S., Sun, A.Z., Lu, Z.W., Cheng, C., Gao, X.X.: J. Magn. Magn. Mater. 381, 451–456 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Taghvaei, A.H., Shokrollahi, H., Janghorban, K., Abiri, H.: Mater. Des. 30, 3989–3995 (2009)CrossRefGoogle Scholar
  29. 29.
    Taghvaei, A.H., Shokrollahi, H.: Janghorban. Mater. Des. 31, 142–148 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Q. S. Meng
    • 1
  • F. Y. Yang
    • 2
  • X. Y. Wu
    • 1
  • T. T. Xu
    • 1
  • M. M. Zhou
    • 1
  • W. W. Guan
    • 1
  • H. L. Su
    • 1
    • 3
    • 4
    Email author
  • Y. Han
    • 2
    Email author
  • Y. W. Du
    • 3
    • 4
    • 5
  1. 1.School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and DevicesHefei University of TechnologyHefeiPeople’s Republic of China
  2. 2.State Key Laboratory of Advanced Power Transmission TechnologyGlobal Energy Interconnection Research Institute Co., Ltd.BeijingPeople’s Republic of China
  3. 3.Huaian Engineering Research Center of Soft Magnetic Powder Cores and DevicesJiangsu Red Magnetic Materials IncorporationXuyiPeople’s Republic of China
  4. 4.Anhui Red Magnetoelectric Technology Co., Ltd.WuhuPeople’s Republic of China
  5. 5.National Laboratory of Solid State Microstructure and Department of PhysicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations