Structural, Magnetic, and Giant Dielectric Properties of Gd Substituted CuFeO2 Composites

  • Dewei Liu
  • Liuting Gu
  • Zhenping ChenEmail author
  • Haiyang Dai
  • Tao Li
  • Renzhong Xue
  • Xinyu Xie
  • Fengjiao Ye
  • Peng Yang
Original Paper


To study the effects of structural modulation by doping rare earth element on the magnetic and dielectric properties, CuFe1-xGdxO2 (0 ≤ x ≤ 0.2) samples are synthesized using the solid-state reaction method. The XRD and SEM results show that a small amount of Gd3+ ions (x ≤ 0.07) effectively occupies the Fe3+ site and promotes the grain growth of the CuFeO2 system. Judging from the magnetic property measurements, the samples (x = 0, 0.01) undergo two successive magnetic transitions. Further increase of x, the magnetic transition of the samples (x ≥ 0.07) has not been detected in the testing temperature range. The magnetization hysteresis loops show that all of the samples have weak ferromagnetic properties, and the saturation magnetization is obviously enhanced with increasing x. Most interestingly, the dielectric measurements suggests that CuFeO2 samples exhibit a giant dielectric constant (εγ~104), and εγ is obviously improved (~ 4.0 × 104) using the proper Gd content. The dielectric properties are explained using the internal barrier layer capacitance model (IBLC).


CuFeO2 ceramics Microstructure Magnetic property Giant dielectric property 


Funding Information

This work was supported by the National Natural Science Foundation of China (Project Nos. 11675149, 11775192) and the Graduates’ Scientific Research Foundation of Zhengzhou University of Light Industry (No. 2017051).


  1. 1.
    Lu, C.L., Dong, S., Wang, K.F., Liu, J.M.: Enhanced polarization and magnetoelectric response in Tb1− xHoxMnO3. Appl. Phys. A Mater. Sci. Process. 99(1), 323–331 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Martins, P., Costa, C.M., Lanceros-Mendez, S.: Nucleation of electroactive β-phase poly (vinilidene fluoride) with CoFe2O4 and NiFe2O4 nanofillers: a new method for the preparation of multiferroic nanocomposites. Appl. Phys. A Mater. Sci. Process. 103(1), 233–237 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Wu, W., Horibe, Y., Lee, N., Cheong, S.W., Guest, J.R.: Conduction of topologically protected charged ferroelectric domain walls. Phys. Lett. B. 108(7), 077233 (2012)CrossRefGoogle Scholar
  4. 4.
    Elkhouni, T., Amami, M., Strobel, P., Salah, A.B.: Effect of Zn substitution on the structural and physical properties of delafossite-type oxide CuCrO2. J. Supercond. Nov. Magn. 27(5), 1111–1118 (2014)CrossRefGoogle Scholar
  5. 5.
    Terada N., Narumi Y., Katsumata K., Yamamoto T., Staub U., Kindo K., Hagiwara M., Tanaka Y., Kikkawa A., Toyokawa H., Fukui T., Kanmuri R., Ishikawa T.: Field-induced lattice staircase in a frustrated antiferromagnet CuFeO2. Phys. Rev. B: Condens. Matter. Mater. Phys. 74(18), 180404 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Kimura, T., Lashley, J.C., Ramirez, A.P.: Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys. Rev. B. 73(22), 220401 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Ozkendir, O.M.: Crystal and electronic study of neodymium-substituted CuFeO2 oxide. Metall. Mater. Trans. A. 47(6), 2906–2913 (2016)CrossRefGoogle Scholar
  8. 8.
    Shannon, R.D., Rogers, D.B., Prewitt, C.T.: Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorg. Chem. 10(4), 713–718 (1971)CrossRefGoogle Scholar
  9. 9.
    Ye, F., Ren, Y., Huang, Q., Fernandez-Baca, J.A., Dai, P., Jeffrey, W.L., Kimura, T.: Spontaneous spin-lattice coupling in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys. Rev. B. 73(22), 220404 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Rojas, S.D., Joshi, T., Wheatley, R.A., Sarabia-Vallejos, M.A., Borisov, P., Lederman, D., Cabrera, A.L.: Optical detection of carbon dioxide adsorption on epitaxial CuFe1-xGaxO2 delafossite film grown by pulse laser deposition. Surf. Sci. 648(648), 23–28 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Terada, N., Khalyavin, D.D., Manuel, P., Osakabe, T., Radaelli, P.G., Kitazawa, H.: Pressure-induced polar phases in multiferroic delafossite CuFeO2. Phys. Rev. B. 89(22), 211–216 (2014)CrossRefGoogle Scholar
  12. 12.
    Elkhoun, T., Amami, M., Hlil, E.K., Salah, A.B.: Effect of spin dilution on the magnetic state of delafossite CuFeO2 with an S = 5/2 antiferromagnetic triangular sublattice. J. Supercond. Nov. Magn. 28(5), 1429–1447 (2015)CrossRefGoogle Scholar
  13. 13.
    Hayashi, K., Fukatsu, R., Nozaki, T., Miyazaki, Y., Kajitani, T.: Structural, magnetic, and ferroelectric properties of CuFe1-xMnxO2. Phys. Rev. B. 87(87), 064418 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Dai, H.Y., Xie, X.Y., Chen, Z.P., Ye, F.J., Li, T., Yang, Y.: Microstructure evolution and magnetic properties of Eu doped CuFeO2 multiferroic ceramics studied by positron annihilation. Ceram. Int. 44(12), 13894–13900 (2018)CrossRefGoogle Scholar
  15. 15.
    Shi, L., Xia, Z., Wei, M., Huang, J., Chen, B., long, Z., Shang, C., Ouyangm, Z., Xia, N.: The enhanced spontaneous dielectric polarization in Ga doped CuFeO2. J. Appl. Phys. 116(17), 173907 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Xie, X.Y., Dai, H.Y., Chen, Z.P., Ye, F.J., Gu, L.T., liu, S.R.: Effect of forming pressure on structure and dielectric properties of CuFeO2 ceramics. Electr. Comp. Mater. 36(12), 16–20 (2017)Google Scholar
  17. 17.
    Espinoza-González, R., Mosquera, E.: Influence of micro- and nanoparticles of zirconium oxides on the dielectric properties of CaCu3Ti4O12. Ceram. Int. 43(17), 14659–14665 (2017)CrossRefGoogle Scholar
  18. 18.
    Lu, D., Yu, X., Liu, J.: Mixed-valent structure, dielectric properties and defect chemistry of Ca1−3x/2TbxCu3Ti4−xTbxO12 ceramics. Ceram. Int. 43(12), 8664–8676 (2017)CrossRefGoogle Scholar
  19. 19.
    Doumerc, J.P., Wichainchai, A., Ammar, A., Pouchard, M., Hagenmuller, P.: On magnetic properties of some oxides with delafossite-type structure. Mater. Res. Bul. 21(6), 745–752 (1986)CrossRefGoogle Scholar
  20. 20.
    Pachoud, E., Martin, C., Kundys, B., Simon, C.H., Maignan, A.: Spin-driven ferroelectricity in the delafossite CuFe1-xRhxO2 (0≤x≤0.15). J. Solid State Chem. 183(2), 344–349 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Hayashi, K., Nozaki, T., Fukatsu, R., Miyazaki, Y., Kajitani, T.: Spin dynamics of triangular lattice antiferromagnet CuFeO2: crossover from spin-liquid to paramagnetic phase. Phys. Rev. B. 80(14), 144413 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Dhruv, P.N., Solanki, N., Kulkarni, S., Jotania, R.B.: Effect of sintering temperature and vinca petals extract on structural and magnetic properties of delafossite CuFeO2. Aip. Conf. Proc. 1728(1), 1885–1985 (2016)Google Scholar
  23. 23.
    Chakrabarti, K., Das, K., Sarkar, B., De, S.K.: Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method. J. Appl. Phys. 110(10), 103905 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Chakrabarti, K., Das, K., Sarkar, B., Ghosh, S., De, S.H., Sinha, G., Lahtinen, J.: Enhanced magnetic and dielectric properties of Eu and Co co-doped BiFeO3 nanoparticles. Appl. Phys. Lett. 101(4), 042401 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Rodrigues, H.O., Pires Junior, G.F.M., Almeida, J.S., Sancho, E.O., Ferreira, A.C., Silva, M.A.S., Sombra, A.S.B.: Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J. Phys. Chem. Solids. 71(9), 1329–1336 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Yan, Y., Jin, L., Feng, L., Gao, G.: Decrease of dielectric loss in giant dielectric constant CaCu3Ti4O12 ceramics by adding CaTiO3. Mater. Sci. Eng. B. 130(1–3), 146–150 (2006)CrossRefGoogle Scholar
  27. 27.
    Li, T., Chen, J., Liu, D.W., Zhang, Z.X., Chen, Z.P., Li, Z.X., Cao, X.Z., Wang, B.Y.: Effect of NiO-doping on the microstructure and the dielectric properties of CaCu3Ti4O12 ceramics. Ceram. Int. 40(7), 9061–9067 (2014)CrossRefGoogle Scholar
  28. 28.
    Cheng, H., Xiao, J., Gao, P., Yan, Y., Zhou, W.: Low and microwave frequency dielectric properties studies on the CaCu(3-x)ZnxTi4O12 ceramics. Pet. Acoustopt. 38(6), 956–960 (2016)Google Scholar
  29. 29.
    Fang, T., Liu, C.: Evidence of the internal domains for inducing the anomalously high dielectric constant of CaCu3Ti4O12. Chem. Mater. 17(20), 5167–5171 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Adams, T.B., Sinclair, D.C., West, A.R.: Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics. J. Am. Ceram. Soc. 89(10), 3129–3135 (2006)CrossRefGoogle Scholar
  31. 31.
    Luo, X., Yang, C., Song, X., Xu, L.: Dielectric and impedance performances of giant dielectric constant oxide CaCu3Ti4O12. Acta. Phys. Sin-ch. Ed. 59(5), 3516–3522 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dewei Liu
    • 1
  • Liuting Gu
    • 1
  • Zhenping Chen
    • 1
    Email author
  • Haiyang Dai
    • 1
  • Tao Li
    • 1
  • Renzhong Xue
    • 1
  • Xinyu Xie
    • 1
  • Fengjiao Ye
    • 1
  • Peng Yang
    • 1
  1. 1.School of Physics and Electronic EngineeringZhengzhou University of light industryZhengzhouChina

Personalised recommendations