Advertisement

Manufacturing, Structure, Properties of MgB2-Based Materials

  • T. PrikhnaEmail author
  • M. Eisterer
  • M. Rindfleisch
  • S. S. Ponomaryov
  • M. Tomsic
  • V. V. Romaka
  • V. Moshchil
  • A. Kozyrev
  • M. Karpets
  • A. Shaternik
Original Paper
  • 36 Downloads

Abstract

The composition of MgB2-based materials (wires, bulks, and thin films) with high critical current densities, jc, prepared at different pressure (0.1 MPa–2 GPa)—temperature (600–1050 °C) conditions was analyzed by the X-ray and JAMP−9500F Auger spectrometer (after removing the oxidized layers at the sample surfaces by Ar ion etching performed directly in the vacuum chamber of a microscope). Similar regularly distributed inhomogeneities connected with Mg, B, and admixture O content variation on the nanolevel were observed in all types of the MgB2-based materials. The correlations between the character of the material inhomogeneities and the attained superconducting characteristics are discussed.

Keywords

Magnesium diboride bulk Wires Thin films Nanostructure Critical current density Manufacturing parameters 

JEL Classification

74.70.Ad 74.25.Sv 74.78-w 74.62.Fj 74.62.Dh 

Notes

References

  1. 1.
    Fluekiger, R. (ed.): Superconducting wires: basics and applications. World Scientific, New Jersey, London, Singapore, Beijing, Shanghai, Hong Kong, Taipei, Chennai, Tokyo (2016)Google Scholar
  2. 2.
    Tomsic, M., Rindfleisch, M., Yue, J., McFadden, K., Phillips, J., Sumption, M.D., Bhatia, M., Bohnenstiehl, S., Collings, E.W.: Overview of MgB2 superconductor applications. Int. J. Appl. Ceram. Technol. 4(3), 250–259 (2007)CrossRefGoogle Scholar
  3. 3.
    Kovalev, L.K., Ilushin, K.V., Penkin, V.T., Kovalev, K.L., Poltavets, V.N., Koneyev, S.M.A., Modestov, K.A., Gawalek, W., Prikhna, T.A., Akimov, I.I.: An experimental investigation of a reluctance electrical drive with bulk superconducting elements in the rotor at temperature below 20 K. J. Phys. Conf. Ser. 43, 792–795 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Prikhna, T.A., Gawalek, W., Savchuk, Y.M., Sergienko, N.V., Moshchil, V.E., Sokolovsky, V., Vajda, J., Tkach, V.N., Karau, F., Weber, H., Eisterer, M., Joulain, A., Rabier, J., Chaud, X., Wendt, M., Dellith, J., Danilenko, N.I., Habisreuther, T., Dub, S.N., Meerovich, V., Litzkendorf, D., Nagorny, P.A., Kovalev, L.K., Schmidt, C., Melnikov, V.S., Shapovalov, A.P., Kozyrev, A.V., Sverdun, V.B., Kosa, J., Vlasenko, A.V.: Nanostructural superconducting materials for fault current limiters and cryogenic electrical machines. Acta Phys. Pol. A. 117(1), 7–14 (2010)CrossRefGoogle Scholar
  5. 5.
    Mamalis, A.G., Hristoforou, E., Manolakos, D.E., Prikhna, T., Teodorakopoulos, I., Kouzilos, G.: Explosively consolidated powder-in-tube MgB2 superconductor aided by post-thermal treatment. IEEE Trans. Appl. Supercond. 19(1), 20–27 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Cunnane, D., Kawamura, J.H., Acharya, N., Wolak, M.A., Xi, X.X., Karasik, B.S.: Lownoise THz MgB2 Josephson mixer. Appl. Phys. Lett. 109, 112602 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Novoselov, E., Cherednichenko, S.: Low noise terahertz MgB2 hot-electron bolometer mixers with an 11 GHz bandwidth. Appl. Phys. Lett. 110, 032601 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Cunnane, D., Galan, E., Chen, K., Xi, X.: X: planar-type MgB2 SQUIDs utilizing a multilayer process. Appl. Phys. Lett. 103, 212603 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Galan, E., Melbourne, T., Davidson, B.A., Xi, X.X., Chen, K.: Multilayer MgB2 superconducting quantum interference filter magnetometers. Appl. Phys. Lett. 108, 172602 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Hong, S.-H., Lee, S.-G., Seong, W.K., Kang, W.N.: Fabrication of MgB2 nanobridge dc SQUIDs by focused ion beam. Physica C. 470, S1036–S1037 (2010)CrossRefGoogle Scholar
  11. 11.
    Harada, Y., Kobayashi, K., Yoshizawa, M.: MgB2 SQUID for magnetocardiography. In: Grigorashvili, Y. (ed.) Superconductors - properties, technology, and applications. Tech (2012).  https://doi.org/10.5772/38652 Google Scholar
  12. 12.
    Lolli, L., Li, T., Portesi, C., Taralli, E., Acharya, N., Chen, K., Rajteri, M., Cox, D., Monticone, E., Gallop, J., Hao, L.: Micro-SQUIDs based on MgB2 nano-bridges for NEMS readout. Supercond. Sci. Technol. 29, 104008–104014 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Cunnane, D., Chen, K., Xi, X.X.: Superconducting MgB2 rapid single flux quantum toggle flip flop circuit. Appl. Phys. Lett. 102, 222601 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Goldacker, W., Schlachter, S.I., Reiner, J., Zimmer, S., Nyilas, A.: Mechanical properties of reinforced MgB2 wires. IEEE Trans. Appl. Supercond. 13(2), 3261–3264 (2003).  https://doi.org/10.1109/TASC.2003.812218 ADSCrossRefGoogle Scholar
  15. 15.
    Serquis, A., Civale, L., Hammon, D.L., Coulter, J.Y., Liao, X.Z., Zhu, Y.T., Peterson, D.E., Mueller, F.M.: Microstructure and high critical current of powder-intube MgB2. Appl. Phys. Lett. 82, 1754 (2003).  https://doi.org/10.1063/1.1561572 ADSCrossRefGoogle Scholar
  16. 16.
    Rostila, L., Demencik, E., Souc, J., Brisigotti, S., Kováč, P., Polak, M., Grasso, G., Lyly, M., Stenvall, A., Tumino, A., Kopera, Ľ.: Magnesium diboride wires with nonmagnetic matrices—AC loss measurements and numerical calculations. IEEE Trans. Appl. Supercond. 21(3), 3338–3341 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Gajda, D., Zaleski, A., Morawski, A., Cetner, T., Thong, C.J., Rindfleisch, M.A.: Point pinning centers in SiC doped MgB2 wires after HIP. Supercond. Sci. Technol. 29, 085010 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Kováč, P., Hušek, I., Melišek, T., Grivel, J.C., Pachla, W., Štrbík, V., Diduszko, R., Homeyer, J., Andersen, N.H.: The role of MgO content in ex situ MgB2 wires. Supercond. Sci. Technol. 17(10), L41 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Bhalothia, S., Kumar, N., Das, S., Bernhard, C., Varma, G.D.: Effect of graphene oxide doping on superconducting properties of bulk MgB2. Supercond. Sci. Technol. 26(9), 095008 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Prikhna, T.A., Gawalek, W., Savchuk, Y.M., Kozyrev, A.V., Wendt, M., Melnikov, V.S., Turkevich, V.Z., Sergienko, N.V., Moshchil, V.E., Dellith, J., Shmidt, C., Dub, S.N., Habisreuther, T., Litzkendorf, D., Nagorny, P.A., Sverdun, V.B., Weber, H.W., Eisterer, M., Noudem, J., Dittrich, U.: Formation of higher borides during high-pressure synthesis and sintering of magnesium diboride and their positive effect on pinning and critical current density. IEEE Trans. Appl. Supercond. 19(3), 2780–2783 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Prikhna, T.A., Eisterer, M., Weber, H.W., Gawalek, W., Kovylaev, V.V., Karpets, M.V., Basyuk, T.V., Moshchil, V.E.: Nanostructural inhomogeneities acting as pinning centers in bulk MgB2 with low and enhanced grain connectivity. Supercond. Sci. Technol. 27(4), 044013–044017 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Prikhna, T., Gawalek, W., Eisterer, M., Weber, H., Monastyrov, M., Sokolovsky, V., Noudem, J., Moshchil, V., Karpets, M., Kovylaev, V., Borimskiy, A., Tkach, V., Kozyrev, A., Kuznietsov, R., Dellith, J., Shmidt, C., Litzkendorf, D., Karau, F., Dittrich, U., Tomsic, M.: The effect of high-pressure synthesis on flux pinning in MgB2-based superconductors. Physica C. 479, 111–114 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Haigh, S., Kovac, P., Prikhna, T., Savchuk, Y.M., Kilburn, M., Salter, C., Hutchison, J., Grovenor, C.: Chemical interactions in Ti doped MgB2 superconducting bulk samples and wires. Supercond. Sci. Technol. 18(9), 1190–1196 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Prikhna, T.A., Gawalek, W., Surzhenko, A.B., Moshchil, V.E., Savchuk, Y.M., Melnikov, V.S., Nagorny, P.A., Habisreuther, T., Dub, S.N., Wendt, M., Litzkendorf, D., Dellith, J., Schmidt, C., Krabbes, G., Vlasenko, A.V.: High-pressure synthesis of MgB2 with and without tantalum addition. Physica C. 372–376(3), 1543–1545 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Hörhager, N., Eisterer, M., Weber, H.W., Prikhna, T., Tajima, T., Nesterenko, V.F.: Ti and Zr doped MgB2 bulk superconductors. J. Phys. Conf. Ser. 43, 500–504 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Prikhna, T.A., Eisterer, M., Rindfleisch, M., Romaka, V.V., Tomsic, M., Moshchil, V.E., Orlovskyi, M.V., Karpets, M.V., Sverdun, V.B., Ponomaryov, S.S., Shaternik, A.V., Kozyrev, A.V.: Correlations between superconducting characteristics and structure of MgB2-based materials, ab-initio modeling. IEEE Trans. Appl. Supercond. 29(3), 1–7 (2019), Art no. 6200207).  https://doi.org/10.1109/TASC.2018.2874415 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Superhard Materials of the National Academy of Sciences of UkraineKievUkraine
  2. 2.Atominstitut, TU WienWienAustria
  3. 3.Hyper Tech Research, Inc.ColumbusUSA
  4. 4.Institute of Semiconductor Physics of the National Academy of Sciences of UkraineKyivUkraine
  5. 5.Lviv Polytechnic National UniversityLvivUkraine

Personalised recommendations