Advertisement

Improvement in the Crystallographic Phase Content and Superconducting Properties of Mechanically Alloyed MgB2

  • S. D. Yudanto
  • Y. P. Dewi
  • A. Imaduddin
  • Y. Nakanishi
  • M. Yoshizawa
  • B. Kurniawan
  • A. ManafEmail author
Original Paper
  • 29 Downloads

Abstract

In this paper, the results of the superconductivity evaluation of MgB2 intermetallic-based superconducting materials prepared through mechanical alloying are reported. The formation of the MgB2 intermetallic phase took place through an intermediate phase reaction at the solid-state reaction temperature, which tends to favor single-phase materials. The annealing of mechanically milled Mg and B powders resulted in the highest mass fraction of MgB2 observed in this study, reaching more than 90% after annealing at 900 °C for 1 h. At that point, there were still second phases present consisting of Mg, MgO, and Fe2B. Improved superconducting properties were obtained in samples sintered at temperatures of 850 °C and 900 °C that had a low resistivity, low critical temperature gap values, and a high residual resistivity ratio (RRR).

Keywords

MgB2 High-energy ball milling Annealing Superconducting Resistivity 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Postgraduate Program of Materials Science Universitas Indonesia and Graduate School of Arts and Science, Iwate University for the research facilities.

Funding Information

This work received financial support provided partially by the Directorate of Research and Community Service Universitas Indonesia under program Grants of Doctoral Dissertation 2018 contract no: 1332/UN2.R3.1/HKP.05.00/2018 (TADOK 2018) and competency funding of the Research Centre for Metallurgy and Material, Indonesian Institute of Science 2018 from the Ministry of Research, Technology and Higher Education, Indonesia.

References

  1. 1.
    Jones, M.E., Marsh, R.E.: J. Am. Chem. Soc. 70, 1434–1436 (1954)CrossRefGoogle Scholar
  2. 2.
    Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Lett. to Nat. 410, 2–3 (2001)Google Scholar
  3. 3.
    Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Squitieri, A.G.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M.: Lett. to Nat. 410, 186–189 (2001)CrossRefGoogle Scholar
  4. 4.
    Kumar, R.G.A., Vinod, K., Aloysius, R.P., Syamaprasad, U.: Mater. Lett. 60, 3328–3331 (2006)CrossRefGoogle Scholar
  5. 5.
    Feng, Q., Chen, C., Xu, J., Kong, L.: Physica C. 411, 41–46 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Shi, Q.Z., Liu, Y.C., Zhao, Q., Ma, Z.Q.: J. Alloys Compd. 458, 553–557 (2008)CrossRefGoogle Scholar
  7. 7.
    Aksu, E.: J. Alloys Compd. 552, 376–381 (2013)CrossRefGoogle Scholar
  8. 8.
    Larson, A.C., Dreele, R.B.: Von. 70, 1–224 (2004)Google Scholar
  9. 9.
    Kim, S., Stone, D.S., Cho, J., Jeong, C., Kang, C., Bae, J.: J. Alloys Compd. 470, 85–89 (2009)CrossRefGoogle Scholar
  10. 10.
    Rajput, S., Chaudhary, S.: IEEE Trans. Appl. Supercond. 20, 26–32 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Safran, S., Kılıçarslan, E., Kılıç, A., Gencer, A.: Cryogenics. 63, 133–137 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Kim, J.H., Yeoh, W.K., Qin, M.J., Xu, X., Dou, S.X.: J. Appl. Phys. 100, 013908–01 - 6 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Jun, B., Ho, J., Kim, C., Nam, K.: J. Alloys Compd. 650, 794–798 (2015)CrossRefGoogle Scholar
  14. 14.
    Kim, J.H., Dou, S.X., Wang, J.L., Shi, D.Q., Xu, X., Hossain, M.S.A., Yeoh, W.K., Choi, S., Kiyoshi, T.: Supercond. Sci. Technol. 448, 448–451 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Ahn, J.H., Oh, S.: Phys. C Supercond. its Appl. 469, 1235–1238 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Singh, D.K., Tiwari, B., Jha, R., Kishan, H., Awana, V.P.S.: Physica C. 505, 104–108 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Rajput, S., Chaudhary, S.: J. Phys. Chem. Solids. 69, 1945–1950 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    De Silva, K.S.B., Xu, X., Gambir, S., Wong, D.C.K., Li, W.X., Hu, Q.Y.: IEEE Trans. Appl. Supercond. 23, 1–4 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. D. Yudanto
    • 1
    • 2
  • Y. P. Dewi
    • 3
  • A. Imaduddin
    • 2
  • Y. Nakanishi
    • 4
  • M. Yoshizawa
    • 4
  • B. Kurniawan
    • 1
  • A. Manaf
    • 1
    Email author
  1. 1.Department of PhysicsUniversitas IndonesiaDepokIndonesia
  2. 2.Research Center for Metallurgy and MaterialsIndonesian Institute of SciencesSouth TangerangIndonesia
  3. 3.Materials Department of Postgraduate ProgramSepuluh Nopember Institute of TechnologySurabayaIndonesia
  4. 4.Graduate School of Arts and ScienceIwate UniversityMoriokaJapan

Personalised recommendations