Signatures of Quantum Transport Steps in Bi2Se3 Single Crystal

  • Rabia Sultana
  • Deepak Sharma
  • R. S. Meena
  • V. P. S. AwanaEmail author


We report signatures of quantum magneto transport steps in a Bi2Se3 single crystal. The Bi2Se3 crystal is grown by self-flux method through solid-state reaction. Details of its structural analysis along with physical properties in terms of low temperature and high field transport, thermal (heat capacity), Raman, X-ray photo electron and angle resolved photo electron spectroscopy were reported earlier (J. Sup. Novel. Mag. 30, 2031 2017). In a present short letter, we show the details of its 2 K and up to 14 Tesla magneto transport, exhibiting quantum transport (QT) like steps above say 11 Tesla field. The possible QT steps cannot be modelled with the SdH (Shubnikov-de Haas) or other possible quantum oscillations. The observed QT like steps are possibly the result of the mixed out-of-plane Rxy(H) and in-plane Rxx(H) contributions from the misaligned [00l] planes of the studied crystal and this may happen with other studied topological insulator (TI) crystals as well. Our careful assessment of crystal XRD data shows the same.


Topological insulators Magneto resistance Quantum properties 


74.70.Dd 74.62.Fj 74.25.F- 



  1. 1.
    Kane, C.L., Mele, E.J.: Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Bernevig, B.A., Phys, Z.: Rev. Let. 106802, 96 (2006)Google Scholar
  3. 3.
    Hasan, M.Z., Kane, C.: Rev. Mod. Phys. 82, 3045 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Kane, C.L., Moore, J.E.: Physics World. 24, 32 (2011)CrossRefGoogle Scholar
  5. 5.
    Ando, Y., Fu, L.: Annu. Rev. Condens. Matter Phys. 6, 361 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    Ando, Y.: J. Phys. Soc. Jpn. 82, 102001 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    Sultana, R., Awana, G., Pal, B., Maheshwari, P.K., Mishra, M., Gupta, G., Gupta, A., Thirupathaiah, Awana V.P.S.: J. Supercond. Nov. Magn. 30, 2031 (2017)CrossRefGoogle Scholar
  8. 8.
    Sultana, R., Neha, P., Goyal, R., Patnaik, S., Awana, V.P.S.: J. Magn. Magn. Mater. 428, 213 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Cao, H., Tian, J., Mitokowski, I., Shen, T., Hu, J., Qiao, S., Chen, Y.P.: Phys. Rev. Lett. 108, 216803 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Busch, M., Chiatti, O., Pezzini, S., Wiedermann, S., Sanchez-Barriga, J., Rader, O., Yashina, L.V., Fischer, S.F.: Sci. Rep. 8(485), (2018)Google Scholar
  11. 11.
    Brune, C., Liu, C.X., Novik, E.G., Hankiewicz, E.M., Buhmann, H., Chen, Y.L., Qi, X.L., Shen, Z.X., Zhang, S.C., Molenkamp, L.W.: Phys. Rev. Lett. 106, 126803 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Awana, G., Sultana, R., Maheshwari, P.K., Goyal, R., Gahtori, B., Gupta, A., Awana, V.P.S.: J. Sup. & Novel Mag. 30, 853 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Physical Laboratory (CSIR)New DelhiIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations