Advertisement

Effects of Bi3+ Substitution on Structural, Morphological, and Magnetic Properties of Cobalt Ferrite Nanoparticles

  • S. E. Mousavi GhahfarokhiEmail author
  • M. Ahmadi
  • I. Kazeminezhad
Original Paper
  • 38 Downloads

Abstract

In this research, the structural, morphological, and magnetic properties of Bi-doped cobalt ferrite (CoFe2-xBixO4) nanoparticles with x = 0.0, 0.05, 1, 0.15, and 0.2, prepared by the sol-gel method, were studied. In order to characterize the samples, several equipment and analyses including thermo-gravimetric and differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared spectrometer (FT-IR), and vibrating sample magnetometer (VSM) were used. The average crystallite sizes of the prepared CoFe2-xBixO4 were calculated using the Scherer, UDM, SSP, and Halder-Wagner methods. The average crystallite sizes for the samples were found in the range of 26 to 44 nm, which can be attributed to the grain growth of the particles. FT-IR spectrum showed bands in the range of 430 to 590 cm−1 due to the stretching vibration of an oxygen atom and metal ions (Fe-O), confirming the formation of spinel ferrite. Surface morphology of the samples was studied using FESEM. The VSM results showed that the saturation and remanence magnetizations increased by raising the doping values up to x = 0.1. The Curie temperature of the cobalt nanoferrites was determined using Faraday’s technique. The highest Curie temperature was found to be 580 °C for the undoped sample.

Keywords

CoFe2-xBixO4 nanoparticles Structural properties Magnetic properties Curie temperature 

Notes

References

  1. 1.
    Subramanian, A.P., Jaganathan, S.K., Manikandan, A., Pandiaraj, K.N., Gomathi, N., Supriyanto, E.: Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Adv. 6, 48294–48314 (2016)CrossRefGoogle Scholar
  2. 2.
    Abraham, A.G., Manikandan, A., Manikandan, E., Jaganathan, S.K., Baykal, A.: Enhanced opto-magneto properties of Ni x Mg1–x Fe2O4 (0.0≤ x≤ 1.0) ferrites nano-catalysts. J. Nanoelectron. Optoelectron. 12, 1326–1333 (2017)CrossRefGoogle Scholar
  3. 3.
    Hema, E., Manikandan, A., Karthika, P., Durka, M., Antony, S.A., Venkatraman, B.R.: Magneto-optical properties of reusable spinel NixMg1-xFe2O4 (0.0 < x < 1.0) nano-catalysts. J. Nanosci. Nanotechnol. 16, 7325–7336 (2016)CrossRefGoogle Scholar
  4. 4.
    Chitra, K., Reena, K., Manikandan, A., Antony, S.A.: Antibacterial studies and effect of poloxamer on gold nanoparticles by zingiber of ficinale extracted green synthesis. J. Nanosci. Nanotechnol. 15, 4984–4991 (2015)CrossRefGoogle Scholar
  5. 5.
    Meenatchi, B., Renuga, V., Manikandan, A.: Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation. Korean J. Chem. Eng. 33, 934–944 (2016)CrossRefGoogle Scholar
  6. 6.
    Hashhash, A., Kasar, M.: Influence of ce-substitution on structural, magnetic and electrical properties of cobalt ferrite nanoparticles. J. Electron. Mater. 45(1), 321–329 (2016)CrossRefGoogle Scholar
  7. 7.
    Mousavi Ghahfarokhi, S.E., Hosseini, S., Zargar, S.M.: Fabrication and investigation of the magnetic and dielectric properties of M-type strontium hexaferrite nanoparticles. Iranian J. Crystallogr. Mineral. 23(2), 359–372 (2015)Google Scholar
  8. 8.
    Zhiqiang, Z., Li, G., Haixia, Y., Qiang, L., Feng, Y.: Hydrothermal synthesis and magnetic properties of multiferroic rare-earth orthoferrites. J. Alloys Compd. 583, 21–31 (2014)CrossRefGoogle Scholar
  9. 9.
    Manikandan, A., Durka, M., Selvi, M.A., Antony, S.A.: Sesamumindicum plant extracted microwave combustion synthesis and opto-magnetic properties of spinel MnxCo1-xAl2O4 nano-catalysts. J. Nanosci. Nanotechnol. 16, 448–456 (2016)CrossRefGoogle Scholar
  10. 10.
    Slimani, Y., Baykal, A., Manikandan, A.: Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J. Magn. Magn. Mater. 458, 204–212 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Jacintha, A.M., Manikandan, A., Chinnaraj, K., Antony, S.A.: Comparative studies of spinel MnFe2O4 nanostructures: structural, morphological, optical, magnetic and catalytic properties. J. Nanosci. Nanotechnol. 15, 9732–9740 (2015)CrossRefGoogle Scholar
  12. 12.
    Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Bappi, P., SankarDhar, S., Habibi, A., Manikandan, A., Ramadoss, G.: Fine cutting edge shaped Bi2O3rods/reduced graphene oxide (RGO) composite for supercapacitor and visible-light photocatalytic applications. J. Colloid Interface Sci. 498, 449–459 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Yüksel, K.: Structural and magnetic properties of Cr doped NiZn-ferrite nanoparticles prepared by surfactant assisted hydrothermal technique. Ceram. Int. 41, 6417–6423 (2015)CrossRefGoogle Scholar
  14. 14.
    Maria Lumina Sonia, M., Anand, S., Maria Vinosel, V., AsisiJanifer, M., Pauline, S., Manikandan, A.: Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2−xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Asiri, S., Güner, S., Demir, A., Yildiz, A., Manikandan, A., Baykal, A.: Synthesis and magnetic characterization of Cu substituted barium hexaferrites. J. Inorg. Organomet. Polym. Mater. 28, 1065–1071 (2018)CrossRefGoogle Scholar
  16. 16.
    Meenatchi, B., Sathiya, L.V., Manikandan, A., Renuga, V., Sharmila, A., Nandhine, A.K., Kumar Jaganathan, S.: Protic ionic liquid assisted synthesis and characterization of ferromagnetic cobalt oxide nanocatalyst. J. Inorg. Organomet. Polym. Mater. 27, 446–454 (2017)CrossRefGoogle Scholar
  17. 17.
    Elayakumar, J., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Thilak, R., Jaganathan, S.K., Baykal, A.: Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) cerium (Ce3+) doped CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 476, 157–165 (2019)ADSCrossRefGoogle Scholar
  18. 18.
    Manikandan, A., Sridhar, R., Antony, S.A., Ramakrishna, S.: A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. J. Mol. Struct. 1076, 188–200 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Zaki, H.M., Saleh, H., Hashhash, A.: Effect of Al3+ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures. J. Magn. Magn. Mater. 401, 1027–1032 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Ghezelbash, S., Yousefi, M., Hossainisadr, M., Baghshahi, S.: Structural and magnetic properties of Sn4+ doped strontium hexaferrites prepared via sol–gel auto-combustion method. IEEE Trans. Magn. 54, 64–70 (2018)CrossRefGoogle Scholar
  21. 21.
    Thakur, A., Sharma, P., Thakur, P.: Effect of high spin Mn2+/Mn3+ ions on microstructural, optical, magnetic and electrical properties of hydrothermally prepared Ni–Mg nanoferrites. Int. J. Mod. Phys. B29, 155–163 (2015)Google Scholar
  22. 22.
    Qiao, W., Li, X., Liu, M., Li, T., Peng, H.X.: La and Co substituted M-type barium ferrites processed by sol–gel combustion synthesis. Mater. Res. Bull. 48, 4449–4453 (2013)CrossRefGoogle Scholar
  23. 23.
    An, G.H., Hwang, T.Y., Kim, J., Kim, J.B., Kang, N., Kim, S., Choi, Y.M., Choa, Y.H.: Barium hexaferrite nanoparticles with high magnetic properties by salt assisted ultrasonic spraypyrolysis. J. Alloy. Compd. 583, 145–151 (2014)CrossRefGoogle Scholar
  24. 24.
    Mousavi Ghahfarokhi, S.E., Alikhani, K., Zargar Shoushtari, M.: The effect of annealing temperature on structural, magnetic and dielectric properties of PbFe11CoO19 nanoparticles. Iranian J. Crystallogr. Mineral. 25(3), 655–666 (2017)CrossRefGoogle Scholar
  25. 25.
    Kiani, E., Rozatian, A.S.H., Yousefi, M.H.: Structural, magnetic and microwave absorption properties of SrFe12-2x(Mn0.5Cd0.5Zr)xO19 ferrite. J. Magn. Magn. Mater. 361, 25–29 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Mousavi Ghahfarokhi, S.E., Ranjbar, F., Zargar Shoushtari, M.: A study of the properties of SrFe12-xCoxO19 nanoparticles. J. Magn. Magn. Mater. 349, 80–87 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Najafi Birgani, A., Niyaifar, M., Hasanpour, A.: Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Motevallizade, L., Sepahvand, F.: Investigation of the effect of annealing temperature on lattice micro strains of SnO2nano particles prepared by sol-gel method. Iranian J. Crystallogr. Mineral. 24, 493–502 (2016)Google Scholar
  29. 29.
    Taraka, Y., Venkateswara, K., Kumar, S., Kumari, B.: X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng. 4, 21–28 (2014)CrossRefGoogle Scholar
  30. 30.
    Gholizadeh, A.: X-ray peak broadening analysis in LaMnO3+δ nano-particles with rhombohedral crystal structure. J. Adv. Mater. Process. 3, 71–83 (2015)Google Scholar
  31. 31.
    Panda, R.K., Muduli, R., Jayarao, G., Sanyal, D., Behera, D.: Effect of Cr3+ substitution on electric and magnetic properties of cobalt ferrite nanoparticles. J. Alloys Compd. 669, 19–28 (2016)CrossRefGoogle Scholar
  32. 32.
    Silva, W.M.S., Ferriera, N.S., Soares, J.M., Da Silva, R.B., Macedo, M.A.: Investigation of structural and magnetic properties of nanocrystalline Mn-doped SrFe12O19 prepared by proteic sol–gel process. J. Magn. Magn. Mater. 395, 263–270 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Qingyao, W., Zhenjiang, Y., Yuewen, W., Zihan, G., Hongde, X.: The magnetic and photocatalytic properties of nanocomposites SrFe12O19/ZnFe2O4. J. Magn. Magn. Mater. 465, 1–8 (2018)CrossRefGoogle Scholar
  34. 34.
    Khademi, F., Poorbafrani, A., Kameli, P., Salamati, H.: Structural, magnetic and microwave properties of Eu-doped barium hexaferrite powders. J. Supercond. Nov. Magn. 25, 525–531 (2012)CrossRefGoogle Scholar
  35. 35.
    Naderi, E., Naseri, M., Souri, D.: The effect of SiO2 and TiO2 nanoparticles on physical properties of SrFe12O19 nanoparticle. Curr. Appl. Phys. 18, 469–476 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Alange, R.C., Khirade, P.P., Birajdar, S.D., Humbe, A.V., Jadhav, K.M.: Structural, magnetic and dialectical properties of Al-Cr Co-substituted M-type barium hexaferrite nanoparticles. J. Mol. Struct. 1106, 460–467 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Bozinaro, M.A.P., Ferriera, N.S., Cunha, F., Macedo, M.A.: Hopkinson effect, structural and magnetic properties of M-type Sm3+- doped SrFe12O19 nanoparticles produced by a proteic sol–gel process. Ceram. Int. 42, 5865–5872 (2016)CrossRefGoogle Scholar
  38. 38.
    Ailin, X., Shunkai, L., Chuangui, J., Shubing, S.: Microstructure and magnetic transition in Cr-substituted Mg–Zn spinel ferrite powders prepared via hydrothermal method. Mater. Electron. 24, 4166–4169 (2013)CrossRefGoogle Scholar
  39. 39.
    Manikandan, A., Durka, M., Seevakan, K., Arul Antony, S.: A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1−xFe2O4 (0.0 ≤ x ≤ 0.5) nanophotocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015)CrossRefGoogle Scholar
  40. 40.
    Shyam, K., Rajaram, S., Santosh, S., Manohar, K., Alothmanc, Z., Hui, B.: Influence of Bi3+-doping on the magnetic and Mössbauer properties of spinel cobalt ferrite. Dalton Trans. 44, 6384–6390 (2015)CrossRefGoogle Scholar
  41. 41.
    Wu, X., Ding, Z., Song, N., Li, L., Wang, W.: Effect of the rare-earth substitution on the structural, magnetic and adsorption properties in cobalt ferrite nanoparticles. Ceram. Int. 42, 4246–4255 (2016)CrossRefGoogle Scholar
  42. 42.
    Hema, E., Manikandan, A., Karthika, P., Antony, S.A., Venkatraman, B.R.: A novel synthesis of Zn2+-doped CoFe2O4 spinel nanoparticles: structural, morphological, opto-magnetic and catalytic properties. J. Supercond. Nov. Magn. 28, 2539–2552 (2015)CrossRefGoogle Scholar
  43. 43.
    Abraham, A.G., Manikandan, A., Manikandan, E., Vadivel, S., Jaganathan, S.K., Baykal, A., Sri Renganathan, P.: Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites. J. Magn. Magn. Mater. 452, 380–388 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Routray, K., Dirtha, S., Dhrubananda, B.: Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications. Mater. Res. Bull. 110, 126–134 (2019)CrossRefGoogle Scholar
  45. 45.
    Manikandan, A., Durka, M., Antony, S.A.: Role of Mn2+ Doping on structural, morphological, and Opto-magnetic properties of spinel Mn x Co1−x Fe2O4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) nanocatalysts. J. Supercond. Nov. Magn. 28, 2047–2058 (2015)CrossRefGoogle Scholar
  46. 46.
    Mozaffari, M., Amighian, J., Darsheshdar, E.: Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol–gel method. J. Magn. Magn. Mater. 350, 19–22 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    Mozaffari, M., Masoudi, H.: Zinc ferrite nanoparticles: new preparation method and magnetic properties. J. Supercond. Nov. Magn. 27, 2563–2567 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. E. Mousavi Ghahfarokhi
    • 1
    Email author
  • M. Ahmadi
    • 1
  • I. Kazeminezhad
    • 1
    • 2
  1. 1.Department of Physics, Faculty of ScienceShahid Chamran University of AhvazAhvazIran
  2. 2.Center for Research on Laser and PlasmaShahid Chamran University of AhvazAhvazIran

Personalised recommendations