Advertisement

Hydrogen Effect on Electron-Phonon Interactions in L10 FePd

  • Ahmed BoufelfelEmail author
Original Paper
  • 25 Downloads

Abstract

The effect of H position in L10 FePd magnetic equiatomic layered structure on electron-phonon interactions is studied via ab initio pseudopotentials density functional approach in the general gradient approximation. The structures investigated are L10 FePd (parent structure), and the specific hydrides 2(FePd)1H (H@Fe layer) and 2(FePd)2H (H@Pd layer). At ground state (0 K), electronic band structure results demonstrate the emergence of Fermi surfaces (FS) in topologies of small isolated multipockets in the hydrides. Using the harmonic approximation I find the phonon energy dispersion of parent and H@Fe simple and classical but for H@Pd complex. I linked this latter structure to its topology of FS, known as Kohn anomaly. Using McMillan-Eliashberg model, I get superconducting transition temperature (Tc) values ≈ 0.00 K, 3.48 K, and 19.75 K for the parent, H@Fe and H@Pd respectively. Therefore, these hypothetical hydrides prove that H position in the structure has a direct influence on Tc values and consequently the suppression of magnetism.

Keywords

Superconductivity Ferromagnetism L10 FePd hydrides Fermi surface Phonons, Kohn anomaly 

Notes

Funding Information

This work was supported by the Algerian ministry of higher education and scientific research, CNEPRU program, under contract number B00L02UN2401 2015 0004

Supplementary material

10948_2019_5057_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1568 kb)

References

  1. 1.
    Mohtadi, R., Orimo, S.I.: The renaissance of hydrides as energy materials. Nat. Rev. Mater. 2(3), 16091 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Gor’kov, L.P., Kresin, V.Z.: Colloquium: high pressure and road to room temperature superconductivity. Rev. Mod. Phys. 90(1), 011001 (2018)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Drozdov, A.P., Eremets, M.I., Troyan, I.A., Ksenofontov, V., Shylin, S.I.: Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature. 525(7567), 73 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Li, Y., Hao, J., Liu, H., Li, Y., Ma, Y.: The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140(17), 174712 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Burger, J.P.: Electron-phonon coupling and superconductivity in metal-hydrogen systems. J. Less Common Met. 101, 53–67 (1984)CrossRefGoogle Scholar
  6. 6.
    Shamp, A., Zurek, E.: Superconductivity in hydrides doped with main group elements under pressure. Novel Superconducting Materials. 3(1), 14–22 (2017)CrossRefGoogle Scholar
  7. 7.
    Skoskiewicz, T.: Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems. Phys. Status Solidi A. 11(2), K123 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    Tripodi, P., Di Gioacchino, D., Vinko, J.D.: Magnetic and transport properties of PdH: intriguing superconductive observations. Braz. J. Phys. 34(3B), 1177–1184 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Ganguly, B.N.: High frequency local modes, superconductivity and anomalous isotope effect in PdH (D) systems. Z. Phys. A Hadrons Nucl. 265(5), 433–439 (1973)CrossRefGoogle Scholar
  10. 10.
    Klein, B.M., Cohen, R.E.: Anharmonicity and the inverse isotope effect in the palladium-hydrogen system. Phys. Rev. B. 45(21), 12405 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Villa-Cortés, S., Baquero, R.: On the calculation of the inverse isotope effect in PdH (D): a Migdal-Eliashberg theory approach. arXiv preprint arXiv:1801.03788 (2018)Google Scholar
  12. 12.
    Errea, I., Calandra, M., Mauri, F.: First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds. Phys. Rev. Lett. 111(17), 177002 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Syed, H. M., Gould, T. J., Webb, C. J., Gray, E.: Superconductivity in palladium hydride and deuteride at 52–61 Kelvin. arXiv preprint arXiv:1608.01774 (2016)Google Scholar
  14. 14.
    Nguyen, D.C., Chu, C.C., Lee, C.H., Lai, W.C., Chang, C.S.: Coercivity enhancement of FePd thin films prepared by the post-annealing of off-stoichiometric magnetron-sputtered multilayers. J. Appl. Phys. 123(7), 073901 (2018)ADSCrossRefGoogle Scholar
  15. 15.
    Hsu, W.H., Bell, R., Victora, R.H.: Ultra-low write energy composite free layer spin-orbit torque MRAM. IEEE Trans. Magn. 99, 1–5 (2018)CrossRefGoogle Scholar
  16. 16.
    Jech, A.E., Abeledo, C.R.: Hyperfine fields in FePdH alloys. J. Phys. Chem. Solids. 28(8), 1371–1374 (1967)ADSCrossRefGoogle Scholar
  17. 17.
    Carlow, J.S., Meads, R.E.: Mössbauer measurement of Curie temperatures and X-ray measurement of lattice parameters of some iron-palladium-hydrogen alloys. J. Phys. C Solid State Phys. 2(11), 2120 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    Carlow, J.S., Meads, R.E.: The iron-palladium-hydrogen alloy system. (Mossbauer studies). J. Phys. F: Met. Phys. 2(5), 982 (1972)ADSCrossRefGoogle Scholar
  19. 19.
    Van Dongen, J.C.M., Mydosh, J.A.: Depression of the superconducting transition temperature of palladium hydride with magnetic impurities: Fe and Cr. Z. Phys. Chem. 116(116), 149–155 (1979)CrossRefGoogle Scholar
  20. 20.
    Boufelfel, A.: Ab initio calculations of L10 FePdH multilayered structure. Int. J. Hydrog. Energy. 41(8), 4719–4728 (2016)CrossRefGoogle Scholar
  21. 21.
    Giustino, F.: Electron-phonon interactions from first principles. Rev. Mod. Phys. 89(1), 015003 (2017)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Alarco, J.A., Talbot, P.C., Mackinnon, I.D.: A complete and accurate description of superconductivity of AlB 2-type structures from phonon dispersion calculations. J. Supercond. Nov. Magn. 31(3), 727–731 (2018)CrossRefGoogle Scholar
  23. 23.
    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter. 21(39), 395502 (2009)CrossRefGoogle Scholar
  24. 24.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    Marzari, N., Vanderbilt, D., De Vita, A., Payne, M.C.: Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 82, 3296 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Baroni, S., De Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    Eliashberg, G.M.: Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP. 11(3), 696–702 (1960)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Allen, P.B., Dynes, R.C.: Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B. 12(3), 905 (1975)ADSCrossRefGoogle Scholar
  29. 29.
    Hosono, H., Kuroki, K.: Iron-based superconductors: current status of materials and pairing mechanism. Physica C: Superconductivity and its Applications. 514, 399–422 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    Bianconi, A., Jarlborg, T.: Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity. Novel Superconducting Materials. 1(1), (2015)Google Scholar
  31. 31.
    Bianconi, A., Jarlborg, T.: Superconductivity above the lowest earth temperature in pressurized sulfur hydride. EPL (Europhysics Letters). 112(3), 37001 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Quan, Y., Pickett, W.E.: Van Hove singularities and spectral smearing in high-temperature superconducting H3S. Phys. Rev. B. 93(10), 104526 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Mehaddene, T., Kentzinger, E., Hennion, B., Tanaka, K., Numakura, H., Marty, A., et al.: Lattice dynamics and migration enthalpies in CoPt3 and FePd. Phys. Rev. B. 69(2), 024304 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    Kohn, W.: Image of the Fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2(9), 393 (1959)ADSCrossRefGoogle Scholar
  35. 35.
    Miiller, A.P.: Real and virtual Kohn effect in palladium by inelastic neutron scattering. Can. J. Phys. 53(22), 2491–2501 (1975)ADSCrossRefGoogle Scholar
  36. 36.
    Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., Robertson, J.: Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93(18), 185503 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Stewart, D.A.: Ab initio investigation of phonon dispersion and anomalies in palladium. New J. Phys. 10(4), 043025 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Kim, D.Y., Scheicher, R.H., Mao, H.K., Kang, T.W., Ahuja, R.: General trend for pressurized superconducting hydrogen-dense materials. Proc. Natl. Acad. Sci. 107(7), 2793–2796 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    McMillan, W.L.: Transition temperature of strong-coupled superconductors. Phys. Rev. 167(2), 331 (1968)ADSCrossRefGoogle Scholar
  40. 40.
    Dynes, R.C.: McMillan's equation and the Tc of superconductors. Solid State Commun. 10(7), 615–618 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    Bazhirov, T., Cohen, M.L.: Spin-resolved electron-phonon coupling in FeSe and KFe2Se2. Phys. Rev. B. 86(13), 134517 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Bazhirov, T., Cohen, M.L.: Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer. J. Phys. Condens. Matter. 25(10), 105506 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Baroni, S., Giannozzi, P., Isaev, E.: Thermal properties of materials from ab-initio quasi-harmonic phonons. arXiv preprint arXiv:1112.4977 (2011)Google Scholar
  44. 44.
    Boufelfel, A., Emrick, R.M., Falco, C.M.: Magnetism of Fe/Pd superlattices. Phys. Rev. B. 43(16), 13152 (1991)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de PhysiqueUniversité du 08 mai 45GuelmaAlgeria

Personalised recommendations