Study of Critical Behavior and Magnetocaloric Effect in Nd1− x SrxMnO3 Compounds

  • M. NoumiEmail author
  • F. Issaoui
  • E. Dhahri
  • E. K. Hlil


In this paper, we have investigated the influence of substitution of Nd by Sr on the structural, magnetic, and magnetocaloric properties of Nd1 − xSrxMnO3 (x = 0.3 and x = 0.4). These compounds were prepared using the solid state method. The structural, morphological, and magnetic properties of our system were characterized by XRD, MEB techniques, and a magnetometer for magnetic characterization. The Rietveld refinement has revealed the coexistence of both Pnma orthorhombic and R-3c rhombohedral phases. The magnetic data indicate that the compounds exhibit a continuous paramagnetic (PM) to ferromagnetic (FM) phase transition. In addition, the critical behavior in both compounds associated with the magnetic phase transition has been studied by the magnetization isotherms. The critical exponents are deduced using various techniques such as the modified Arrott plot, Kouvel–Fisher plot, and critical isotherm technique. Finally, the results obtained of the magnetocaloric effect are in agreement with the reported values of previous researches. These results show that our samples can be used as a magnet refrigerant at room temperature.


Magnetic materials Curie temperature Magnetocaloric effect Magnetic refrigerant material 



  1. 1.
    Shwartz, R.B., Koch, C.C.: Appl. Phys. Lett. 49, 146 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Rawers, J.C., Doan, R.C., Slavens, G., Govier, D., Siple, J.: J. Mater. Syn. Process. 1(2), 75 (1993)Google Scholar
  3. 3.
    Calka, A., Wexler, D., Stevenson, A.: J. Metastable Nanocryst. Mater. 8, 649 (2000)CrossRefGoogle Scholar
  4. 4.
    Siegel, R.W.: Nanostruct. Mater. 3, 1 (1993)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Le Caër, G., Delcroix, P.: Nanostruct. Mater. 7, 127 (1996)CrossRefGoogle Scholar
  6. 6.
    Herr, U., Jing, J., Birringer, R., Gonser, U., Gleiter, H.: Appl. Phys. Lett. 50, 472 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Thèse deHend Najjar, Lille1 (2012)Google Scholar
  8. 8.
    Rao, C.N.R., Cheetham, A.K.: Science. 276, 911 (1999)CrossRefGoogle Scholar
  9. 9.
    Dagotto, E., Hotta, T., Moreo, A.: Phys. Rep. 344, 1 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Tokura, Y. (ed.): Colossal Magnetoresistive Oxides. Gordon and Breach, Amsterdam (2000)Google Scholar
  11. 11.
    Goodenough, J.B.: Phys. Rev. 100, 564 (1955)ADSCrossRefGoogle Scholar
  12. 12.
    Mahendiran, R., Tiwary, S.K., Raychaudhuri, A.K., Ramakrishnan, T.V., Mahesh, R., Rangavittal, N., Rao, C.N.R.: Phys. Rev. B. 53, 3348 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Rodriguez-Martinez, L.M., Attfield, J.P.: Phys. Rev. B. 58, 2426 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Fan, J., Pi, L., Tong, W., Xu, S., Gao, J., Zha, C., Zhang, Y.: Phys. Rev. B. 68, 092407 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    Phan, M.H., Morales, M.B., Bingham, N.S., Srikanth, H., Zhang, C.L., Cheong, S.W.: Phys. Rev. B. 81, 094413 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Nisha, P., Savitha Pillai, S., Darbandi, A., Varma, M.R., Suresh, K.G., Hahn, H.: Critical behavior and magnetocaloric effect of nano crystalline La0.67Ca0.33Mn1-xFexO3 (x=0.05, 0.2) synthesized by nebulized spray pyrolysis. Mater. Chem. Phys. 136, 66–74 (2012)CrossRefGoogle Scholar
  17. 17.
    Ben Jemaa, F., Mahmood, S.H., Ellouze, M., Hlil, E.K., Halouani, F.: Critical behavior in Fe-doped manganites La0.67Ba0.22Sr0.11Mn1-xFexO3 (0 < x < 0.2). J. Mater. Sci. Mater. Electron. 49, 6883–6891 (2014)ADSGoogle Scholar
  18. 18.
    Ghosh, K., Lobb, C.J., Greene, R.L.: Critical phenomena in double-exchange ferromagnet La0.7Sr0.3MnO3. Phys. Rev. Lett. 81, 4740–4743 (1988)ADSCrossRefGoogle Scholar
  19. 19.
    Anand A, Veena R. K., Manjuladevi M.: JMMM. 09.062 (2018)Google Scholar
  20. 20.
    Arrott, A., Noakes, J.E.: Phys. Rev. Lett. 19, 786 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    Ouvel, J.S., Fisher, M.E.: Phys. Rev. B136, A1626 (1964)ADSGoogle Scholar
  22. 22.
    Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  23. 23.
    Banerjee, S.K.: Phys. Lett. 12, 16 (1964)ADSCrossRefGoogle Scholar
  24. 24.
    Fisher, M.E.: Rep. Prog. Phys. 30, 615 (1967)ADSCrossRefGoogle Scholar
  25. 25.
    Jesser, R., Bieber, A., Kuentzler, R.: Magnetic properties of the ordered VPt3 alloy.—I.—Ferromagnetic behaviour. J. Phys. France. 42(8) (1981)CrossRefGoogle Scholar
  26. 26.
    Arajs, S., Thean, B.L., Anderson, E.E., Stelmach, A.A.: Critical magnetic behavior of nickel near the curie point. Phys. Status Solidi. 41, 639–648 (1970)CrossRefGoogle Scholar
  27. 27.
    Gorodetsky, G., Shrikman, S., Treves, D.: The critical behavior of a weak ferromagnet. Solid State Commun. 4, 147–151 (1966)ADSCrossRefGoogle Scholar
  28. 28.
    Yang, J., Lee, Y.P., Li, Y.: Critical behavior of the electron-doped manganite La0.9Te0.1MnO3. Phys. Rev. B. 76(054442), 1–5 (2007)Google Scholar
  29. 29.
    Nikitin, S.A., Ivanova, T.I., Zvonov, A.I., Yu, S., Koshkid, K., Cwik, J., Rogacki, K.: Acta Mater. 161, 331–337 (2018)CrossRefGoogle Scholar
  30. 30.
    Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, London (1971)Google Scholar
  31. 31.
    Widom, B.: Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43, 3892–3897 (1965)ADSCrossRefGoogle Scholar
  32. 32.
    Oleaga A, Salazar A, Ciomaga Hatnean M, Balakrishnan G.: J. Alloys. Compd. 682, 825–831 (2016)Google Scholar
  33. 33.
    Xu, L., Fan, J., Shi, Y., Zhu, Y., BÄrner, K., Yang, C., Shi, D.: EPL. 112, 17005 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Pramanik, A.K., Banerjee, A.: Phys. Rev. B. 79, 214426 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Fan, J., Pi, L., Zhang, L., Tong, W., Ling, L., Hong, B., Shi, Y., Zhang, W., Lu, D., Zhang, Y.: Appl. Phys. Lett. 98, 072508 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Pecharsky, V.K., Gschneidner, K.A., Tsokol, A.O.: Rep. Prog. Phys. 68, 1479 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    Gschneidner Jr., K.A., Pecharsky, V.K.: Annu. Rev. Mater. Sci. 30, 387 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    Phan, M.H., Yu, S.-C., Hur, N.H.: Appl. Phys. Lett. 86, 072504 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    Bruck, E.: J. Phys. D. Appl. Phys. 38, R381 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Unit of Valuation and Optimization of ResourceFaculty of Science and Technology of Sidi Bouzid University of KairouanSidi BouzidTunisia
  2. 2.Laboratory of Applied PhysicsFaculty of Sciences of Sfax UniversitySfaxTunisia
  3. 3.Institut NéelCNRS et Université Joseph FourierGrenobleFrance

Personalised recommendations