Advertisement

Martensitic Transformation and Magnetocaloric Effect in High-Pressure Synthesized Ni53Mn23.5Ga23.5 Alloys

  • Mingang ZhangEmail author
  • Wenhe Liu
  • Fenghua Chen
  • Kewei Zhang
  • Fan Li
  • Dongyang Zhao
  • Xiaohong Xu
Original Paper
  • 22 Downloads

Abstract

The polycrystalline Ni53Mn23.5Ga23.5 ferromagnetic alloy was synthesized by high-pressure method. The Ni53Mn23.5Ga23.5 ribbons were prepared by melt-spinning; then, the ribbons were pressed to the bulk samples under the 6-GPa high-pressure and heated to 1173 K for 30 min. The surface morphology, phase transition, and magnetocaloric effect (MCE) were investigated in the Ni53Mn23.5Ga23.5 bulk sample. Structural analysis and magnetic measurements studies of the bulk samples revealed the martensitic transformation at room temperature with a low thermal hysteresis of magnetization, and the nanocrystalline was observed by atomic force microscope measurements. The Ni53Mn23.5Ga23.5 bulk sample exhibits the directionality, and the magnetic properties have the large magnetization and low coercivity when the sample direction of the applied pressure was perpendicular to the direction of the applied magnetic field. The maximum entropy changes (∆SM) of − 4.8 J/kg K have been obtained at 330 K under the field of 30 kOe in the Ni53Mn23.5Ga23.5 bulk sample.

Keywords

Ni–Mn–Ga alloys High-pressure synthesized Martensitic transformation Magnetic entropy changes 

Notes

Funding Information

This work was supported by the Cooperative Innovation Center Project of Shanxi Advanced Permanent Magnet Materials and Technology (2016-09); Talent Training Project of Joint Training Base for Graduate Students in Shanxi (No. 2016JD36); Key Team of Scientific and Technological Innovation in Shanxi Province (No.2013131009); Research Project Supported by Shanxi Scholarship Council of China (No.2013-098); Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, Shanxi Scholarship Council of China (Grant No. 2016-092); China Postdoctoral Science Foundation funded project (Grant No. 2015M571285); Scientific and Technological Innovation Projects for Excellent Researchers of Shanxi Province (No. 201805D211042).

References

  1. 1.
    Ullakko, K., O’Handley, R.C., Huang, J.K., Kantner, C., Kokorin, V.V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. (1996)Google Scholar
  2. 2.
    Murray, S.J., Marioni, M., Allen, S.M., Ohandley, R.C., Lograsso, T.A.: 6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga. Appl. Phys. Lett. 77(6), 886–888 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Sozinov, A., Likhachev, A.A., Lanska, N., Ullakko, K., Lindroos, V.K.: 10% magnetic-field-induced strain in Ni-Mn-Ga seven-layered martensite. J. Phys. IV. 112, 955–958 (2003)Google Scholar
  4. 4.
    Chernenko, V.A., Lvov, V., Pons, J., Cesari, E.: Superelasticity in high-temperature Ni–Mn–Ga alloys. J. Appl. Phys. 93(5), 2394–2399 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Mostafaei, A., Kimes, K.A., Stevens, E.L., Toman, J., Krimer, Y.L., Ullakko, K., Chmielus, M.: Microstructural evolution and magnetic properties of binder jet additive manufactured Ni-Mn-Ga magnetic shape memory alloy foam. Acta Mater. 131, 482–490 (2017)CrossRefGoogle Scholar
  6. 6.
    Dey, S., Singh, S., Roy, R.K., Ghosh, M., Mitra, A., Panda, A.K.: Influence of Mn incorporation for Ni on the magnetocaloric properties of rapidly solidified off-stoichiometric NiMnGa ribbons. J Magn Magn Mater. 397(3), 342–346 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Pons, J., Seguı́, C., Chernenko, V.A., Cesari, E., Ochin, P., Portier, R.: Transformation and ageing behaviour of melt-spun Ni–Mn–Ga shape memory alloys. Mater Sci Eng A. 273–275(99), 315–319 (1999)CrossRefGoogle Scholar
  8. 8.
    Albertini, F., Besseghini, S., Paoluzi, A., Pareti, L., Pasquale, M., Passaretti, F., Sasso, C.P., Stantero, A., Villa, E.: Structural, magnetic and anisotropic properties of Ni2MnGa melt-spun ribbons. J Magn Magn Mater. 242–245(4), 1421–1424 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Chernenko, V.A., Kokorin, V.V., Vitenko, I.N.: Properties of ribbon made from shape memory alloy Ni2MnGa by quenching from the liquid state. Smart Mater Struct. 3(1), 80–82 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Chen, F., Zhang, M., Chai, Y., Gong, C.: Martensitic structure and magnetic domain transformation in melt-spun Ni-Mn-Ga ferromagnetic ribbons. Phys. Status Solidi A. 209(8), 1557–1561 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Rao, N.V.R., Gopalan, R., Chandrasekaran, V., Suresh, K.G.: Microstructure, magnetic properties and magnetocaloric effect in melt-spun Ni–Mn–Ga ribbons. J Alloys Compd. 478(1), 59–62 (2009)CrossRefGoogle Scholar
  12. 12.
    Heczko, O., Svec, P., Janickovic, D., Ullakko, K.: Magnetic properties of Ni-Mn-Ga ribbon prepared by rapid solidification. IEEE Trans Magn. 38(5), 2841–2843 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Liu, Z.H., Liu, H., Zhang, X.X., Zhang, M., Dai, X.F., Hu, H.N., Chen, J.L., Wu, G.H.: Martensitic transformation and magnetic properties of Heusler alloy Ni–Fe–Ga ribbon. Phys. Lett. A. 329(3), 214–220 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Liu, Z.H., Chen, J.L., Hu, H.N., Zhang, M., Dai, X.F., Zhu, Z.Y., Liu, G.D., Wu, G.H., Meng, F.B., Li, Y.X.: The influence of heat treatment on the magnetic and phase transformation properties of quaternary Heusler alloy Ni-Mn-Fe-Ga ribbons. Scr. Mater. 51(10), 1011–1015 (2004)CrossRefGoogle Scholar
  15. 15.
    Hu, C.-C., Shi, Y.-G., Shi, D.-N., Chen, L.-Q.: Synthesis, magnetic properties and magnetostriction of Pr(Fe0.75Co0.15Cu0.01Nb0.04B0.05)1.93 bulk nanocrystalline synthesized under high pressure. AIP Adv. 6(5), 056215 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Bourgault, D., Porcar, L., Bruyère, C., Jacquet, P., Courtois, P.: Uniaxial pressure setup for piezoresistance and magnetoresistance measurements in Heusler materials. Rev. Sci. Instrum. 84(1), 2130 (2013)CrossRefGoogle Scholar
  17. 17.
    Markovich, V., Rozenberg, E., Gorodetsky, G., Greenblatt, M., Mccarroll, W.H.: Suppression of the ferromagnetic-insulating phase in self-doped La0.94Mn0.98O3 crystals under pressure. Phys Rev B. 63(5), 811–820 (2001)CrossRefGoogle Scholar
  18. 18.
    Ishizuka, M., Kai, Y., Akimoto, R., Kobayashi, M., Amaya, K., Endo, S.: Pressure-induced ferromagnetism in EuTe. J Magn Magn Mater. 166(166), 211–215 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Adams, A.R., Pickering, C., Vinson, P.J.: An apparatus for high uniaxial stress electrical investigations of semiconductors. J Phys E Sci Instrum. 13(12), 1331–1335 (1980)ADSCrossRefGoogle Scholar
  20. 20.
    Arumugam, S., Môri, N., Takeshita, N., Takashima, H., Noda, T., Eisaki, H., Uchida, S.: Competition of static stripe and superconducting phases in La(1.48)Nd(0.4)Sr(0.12)CuO(4) controlled by pressure. Phys Rev Lett. 88(24), 247001 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Tranquada, J.M., Axe, J.D., Ichikawa, N., Moodenbaugh, A.R., Nakamura, Y., Uchida, S.: Coexistence of, and competition between, superconductivity and charge-stripe order in La(1.6-x)Nd(0.4)Sr(x)CuO(4). Phys Rev Lett. 78(2), 338–341 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    Braithwaite, D., Chouteau, G., Martinez, G.: Inductive measurement of the critical temperature of high-Tc superconductors in a diamond anvil cell. Phys B Condens Matter. 1(12), 1347 (1990)Google Scholar
  23. 23.
    Dai, Y., Hou, L., Fautrelle, Y., Li, Z., Esling, C., Ren, Z., Li, X.: Martensitic transformation and detwinning in directionally solidified two-phase Ni-Mn-Ga alloys under uniaxial compression. J. Alloys Compd. 722, 721–728 (2017)CrossRefGoogle Scholar
  24. 24.
    Shi, Y.G., Tang, S.L., Wang, R.L., Su, H.L., Han, Z.D., Lv, L.Y., Du, Y.W.: High-pressure synthesis of giant magnetostrictive PrxTb1−xFe1.9 alloys. Appl. Phys. Lett. 89(20), 749 (2006)Google Scholar
  25. 25.
    Feng, Y., Sui, J.H., Chen, L., Cai, W.: Martensitic transformation behaviors and magnetic properties of Ni–Mn–Ga rapidly quenched ribbons. Mater. Lett. 63(12), 965–968 (2009)CrossRefGoogle Scholar
  26. 26.
    Righi, L., Albertini, F., Villa, E., Paoluzi, A., Calestani, G., Chernenko, V., Besseghini, S., Ritter, C., Passaretti, F.: Crystal structure of 7M modulated Ni–Mn–Ga martensitic phase. Acta Mater. 56(16), 4529–4535 (2008)CrossRefGoogle Scholar
  27. 27.
    Chen, F., Huang, Q., Jiang, Z., Zhang, M., Xu, X., Zhang, Q., Zhao, J.: A switch-like magnetoresistance of ferromagnetic Ni–Mn–Ga ribbon during martensitic transformation. Mater. Lett. 160, 428–431 (2015)CrossRefGoogle Scholar
  28. 28.
    Chen, F., Huang, Q., Jiang, Z., Xuan, H., Zhang, M., Xu, X., Zhao, J.: Large magnetoresistance in highly textured Mn44.7Ni43.5Sn11.8 melt spun ribbons. Smart Mater Struct. 25(5), 055031 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Yunqing Ma, C.J., Li, Y., Xu, H., Wang, C., Liu, X.: Study of Ni50+xMn25Ga25-x (x = 2–11) as high-temperature shape-memory alloys. Acta Mater. 55, 1533–1541 (2007)CrossRefGoogle Scholar
  30. 30.
    Jian Yao, X.Z., Cai, W., Sui, J.: Characterization of free-standing nanocrystalline Ni55.2Mn24.7Ga19.9Gd0.2 high temperature shape memory thin film. J. Alloys Compd. 661, 43–48 (2016)CrossRefGoogle Scholar
  31. 31.
    Long, Y., Zhang, Z.Y., Wen, D., Wu, G.H., Ye, R.C., Chang, Y.Q., Wan, F.R.: Phase transition processes and magnetocaloric effects in the Heusler alloys Ni-Mn-Ga with concurrence of magnetic and structural phase transition. J. Appl. Phys. 98(4), 4494 (2005)CrossRefGoogle Scholar
  32. 32.
    Sozinov, A., Likhachev, A.A., Ullakko, K.: Crystal structures and magnetic anisotropy properties of N-iMn-Ga martensitic phases with Giant magnetic-field-induced strain. IEEE Trans. Magn. 38, 2814–2816 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mingang Zhang
    • 1
    Email author
  • Wenhe Liu
    • 1
  • Fenghua Chen
    • 1
  • Kewei Zhang
    • 1
  • Fan Li
    • 1
  • Dongyang Zhao
    • 1
  • Xiaohong Xu
    • 2
  1. 1.Institute of magnetoelectric functional materialsTaiyuan University of Science and TechnologyTaiyuanPeople’s Republic of China
  2. 2.Institute of Materials ChemistryShanxi Normal UniversityLinfenPeople’s Republic of China

Personalised recommendations